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Abstract

The present paper intends to draw the conception of language implied
in the technique of word embeddings that supported the recent develop-
ment of deep neural network models in computational linguistics. After
a preliminary presentation of the basic functioning of elementary artifi-
cial neural networks, we introduce the motivations and capabilities of word
embeddings through one of its pioneering models, word2vec. To assess the
remarkable results of the latter, we inspect the nature of its underlying
mechanisms, which have been characterized as the implicit factorization
of a word-context matrix. We then discuss the ordinary association of the
“distributional hypothesis” with a “use theory of meaning”, often justi-
fying the theoretical basis of word embeddings, and contrast them to the
theory of meaning stemming from those mechanisms through the lens of
matrix models (such as VSMs and DSMs). Finally, we trace back the
principles of their possible consistency through Harris’s original distribu-
tionalism up to the structuralist conception of language of Saussure and
Hjelmslev. Other than giving access to the technical literature and state
of the art in the field of Natural Language Processing to non-specialist
readers, the paper seeks to reveal the conceptual and philosophical stakes
involved in the recent application of new neural network techniques to the
computational treatment of language.

Keywords Word Embeddings · Natural Language Processing ·
word2vec · Neural Networks · Philosophy of Language · Matrix Models ·
Distributional Hypothesis · Structuralism

Originally published in Philosophy & Technology 34.1 (2021), pp. 149–214. ISSN: 2210-5441.
DOI: 10.1007/s13347-020-00393-9. Please cite the original version.
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 839730.
File version: 1.0.2023.02.16.

1

https://link.springer.com/article/10.1007/s13347-020-00393-9


2 Why can computers understand natural language?

Il n’y a pas de “philosophie” du langage.
Il n’y a que la linguistique.

Louis Hjelmslev
Principes de Grammaire Générale, 1928

1 Introduction

Whoever relies ever so little on the regular use of computational treatment of
natural language, such as automatic translation, speech recognition or spelling
and grammar correction, cannot have failed to notice that, in the last few years,
even the most elementary tools available to the general public have experienced
a remarkable increase in performance. At the origin of this phenomenon is a
significant technological shift brought about by the landing of the new genera-
tion of artificial neural network (NN) architectures in the field of Computational
Linguistics or Natural Language Processing (NLP). Yet the rapid adoption of
new (i.e. deep) NN techniques for the treatment of everyday language has more
profound consequences than a backdoor technical improvement, a substantial
gain in performance and a handful of novel applications. The success of NN
linguistic models brings to the surface a whole new image of language.

By image of language1 we should understand a pre-theoretical and natural
notion of what language is, often attributed more to common sense than to so-
phisticated conceptual elaboration, that acts as an implicit presupposition even
for the most advanced scientific inquiry. To continue to paraphrase Deleuze’s
words (1994, p. 131), it is in terms of this image that everybody knows and is
presumed to know what it means to speak or write.

To a large extent, over the past century, the image of language in most sci-
entific and philosophical fields of research has been attached to what is usually
referred to as “philosophy of language”, a specific region of philosophical in-
quiry that tends to tie the problem of language and its meaning to those of
representation, reference, truth and reality.2 In most of the cases, that image
also shows us that language is the manifestation of the competence of individual
subjects somehow rooted in their biological constitution—and in their brain as
privileged biological substratum—as an instrumental component of their cogni-
tive relation with their environment. In its pre-scientific version, that image is
so widely established that it often pervades scientific research in multiple fields,
by discretely indicating the places where the truth about language should be
looked for. And even when scientific results from the specific field of linguistics
happen to challenge any of the fundamental features of that image, it is most
likely that the former rather than the latter will be viewed with suspicion.

Recent NN models for NLP are not the exception in this respect. Their
results are nevertheless so appealing that suspicion in this case often turns into
sheer awe. To such an extent that, to the unavoidable question of if and how
computers can “understand” natural language, it has become customary to
speak about the “mysteries” and “magic” of NN models.3 As if it were easier to

1I borrow this expression from Maniglier (2016, p. 359), who in turn takes inspiration from
Deleuze’s notion of “image of thought” (Deleuze, 1994, ch. III).

2See for instance Hale and Wright (1997).
3See for instance Christopher Manning and Richard Socher’s tutorial “Deep Learning for
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attribute the grounds of scientific results to some obscure cause than to accept
the challenge of critically reassessing our received image of language in such a
way that its adequacy with the facts diminishes our state of bewilderment.

The following pages are an attempt to start depicting the image of language
that those new computational models offer to us. As a way, of course, of con-
tributing to the demystification of the magical power of new technologies, but
also of acknowledging their full philosophical import. It will turn out that such
image is not so unfamiliar to us after all: not only can most of the underlying
mechanisms of NN models for NLP be explained by well-known techniques in
computational linguistics, but an early outline of the image of language they
convey can also be recognized in the structuralist background of the original
distributional hypothesis, often invoked as justification in the development of
the field in present days. Among the multiple aspects of those NN models, we
will focus exclusively on word embeddings, a general representation of linguis-
tic units through vectors in continuous space which became the standard input
form for most NN architectures dealing with NLP tasks. After a preliminary
presentation of the basic functioning of elementary NN models, we shall intro-
duce the motivations and capabilities of word embeddings through one of its
pioneering models, word2vec (section 2), and, relying on existing literature, we
will relate the mechanisms of word embeddings to already existing NLP models
based on term-context matrix analysis (section 3). We will then assess the im-
age of language stemming from those mechanisms by contrasting it to the one
usually conveyed by the association between the distributional hypothesis and a
use theory of meaning (section 4) and we will finally trace that image back up to
the structuralist background of distributionalism (section 5). We will conclude
with a detailed summary of our inquiry and some final comments, to which the
reader can refer to have an overall reconstruction of the arguments advanced in
the next pages.

2 Word embeddings: The ground layer of
natural language

2.1 Preliminaries: Neural Network models4

In their most elementary form, artificial NNs can be seen as ways of transform-
ing a vector (i.e. a list of numbers) into another vector, through successive
parametrized transformations,5 each of which takes a vector as an input and

Natural Language Processing (without Magic)” at , implicitly denouncing such attitudes in
the reception of field.

4The following presentation is deliberately concise and intends to give a background idea
only. The reader already acquainted with NN architectures may skip this section. A complete
presentation of deep NNs can be found in Goodfellow et al. (2016). See Schmidhuber (2015)
for a historical overview of deep learning techniques in neural networks.

5Each one of those transformations consists typically of n weighted sums si =
∑

wijxj of
the components xj of the input vector (where 1 ≤ i ≤ n, 1 ≤ j ≤ m, with n the dimension
of the output vector and m the dimension of the input vector), plus a bias term bi such that
zi = si + bi. A non-linear transformation ai = f(zi) is computed on top of that, such as a
sigmoid function which “squeezes” the result of the linear transformation z between −1 and
1. If the weights wij are expressed as a matrix W of dimensions n × m and the biases bi
as an n-dimensional vector, the entire transformation can be expressed as a = f(Wx + b).
Each layer of the network (i.e. each successive transformation) has a comparable form and

https://nlp.stanford.edu/courses/NAACL2013/
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yields a vector as an output that will be fed as the input vector of the next
transformation. An input vector is thus fed into the network that will be trans-
formed into another vector, which will be in turn transformed into a new one
again and again until a final vector, which will be taken as the output of the
procedure. Each one of those successive vectors is considered as a layer. The
existence of multiple layers is what makes neural networks deep.

Insofar as different kinds of contents (in the form of images, sounds, texts,
etc.) can be represented as lists of numbers (which is trivially the case if those
contents exist in digital form), the hope is that, given a significant number of
pairs of such vector representations corresponding to meaningful relations be-
tween the respective contents (e.g. an image and its textual description, a sound
and the image of the object to which it corresponds, a written sentence and its
translation into another language, etc.), the parameters of the transformations
leading from one layer to the next can be so adjusted that, for any new input
vector not included in the set of given pairs, the network produces a meaningful
output vector bearing the same relation with the former as the pairs of that
set. To that end, NNs are trained using the initial set of pairs of input-output
vectors by means of an algorithm known as backpropagation.6 At the beginning
of the training, the parameters are initialized randomly, and the input vectors
of the training set are fed into the network. The difference (also called error
or loss) between the output vector thus computed by the network and the ex-
pected one given by the training set is then measured by a loss function, and
such measure is used to progressively adjust the parameters in order to minimize
the error, until minimization stabilizes, hopefully at a negligible level. Once the
NN reaches such a state, it can be expected to successfully treat new unseen
inputs.7

The unexpected efficacy attained by NN models in the last decades could,
nonetheless, never overshadow a fundamental drawback of that method: since
the adjustment of the parameters is performed automatically and the states
of the model (i.e. the particular values of the intermediate vectors or hidden
layers) are uninterpretable in principle, the reasons behind such efficacy are
opaque at best. Hence, reliance on such methods within their multiple fields of
application remains an open question. Moreover, from an epistemological view-
point, the high efficacy levels of NNs contrasts with the practically non-existent
intelligibility they provide upon the phenomenon they are able to reproduce.

2.2 Word2vec: The triumph of word vector
representations

Compared to other tasks, such as image or sound processing, deep NN mod-
els have been rather marginal among computational models for natural lan-
guage until recent years. Early applications of deep NNs to natural language
were mostly focused on specific tasks, and in speech recognition in particu-
lar, for which they could show some significant results,8 while more general

the parameters to be adjusted correspond to the weights collected in the matrices W and the
biases of the vectors b of each layer.

6Implementing (different versions of) stochastic gradient descent.
7The whole system can thus be seen as a procedure to approximate any kind of function.

For an accessible presentation of universal approximation theorems, see (Nielsen, 2015, ch. 4).
8See for instance Dahl et al. (2012).
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models found it difficult to compete with well-established statistical inference
approaches, like n-gram models, in which a word is predicted by computing
the conditional probability of that word given a fixed number of immediately
preceding words.9 However, during the 2000s, an alternative conception of the
representation of words grew stronger among the community of NN NLP which
would eventually lead to a reversal of that situation.10

The idea gradually emerging from those works was the following. If we think
of an application of NN techniques to NLP, it is easy to see that in the vast
majority of the cases, the input of the model takes the form of (one or several)
linguistic units, typically words. In accordance with classic statistical language
models, NN models would then represent those words as input vectors in the
form of indexes over a given vocabulary. Thus, if the word “house” is the 542nd

word of a vocabulary V containing a total of 3 million words and phrases,11 that
word would be represented by a large 3-million-dimensional “one-hot” vector,
i.e. composed of 0 everywhere, except for a 1 at the 542nd position:

vhouse =(0, 0, 0, 0, 0, 0, 0, 0, . . . , 0,

542nd position︷︸︸︷
1 , 0, . . . , 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸

3 million dimensions

)

Given this input, the output of the model depends, in principle, on the specific
task the network is supposed to perform. For instance, in the case of automatic
translation, this could be a one-hot vector (or several concatenated one-hot
vectors) indicating the corresponding word (or words) in a given vocabulary of
the target language; or in sentiment analysis, a one or two-dimensional vector
indicating if the input is positive or negative. Finally, the loss function would
be designed according to the task, and the network would be trained on relevant
corpora.

However, researchers around NN models progressively realized that the layer
resulting from the first transformation of the input vector (the “projection
layer”) had a special significance. Indeed, the vectors resulting from that trans-
formation once the whole network was trained on one specific task could be
used as input vectors for networks designed for other NLP tasks, with a signif-
icant increase in performance on the latter. In other terms, those transformed
vectors could be considered as generic representations of words capturing some
of their essential linguistic features, in opposition to the localist, atomistic and
purely indexical one-hot representation suggested by traditional methods. On
the basis of that remarkable fact, researchers figured out that one could then
train those vectors independently of any specific task, and replace traditional
indexical representations of words with those trained vectors for practically all
NLP tasks.

9See Manning and Schütze (1999) for a detailed presentation.
10Cf. Bengio et al. (2003); Schwenk and luc Gauvain (2002); Blitzer et al. (2005); Mnih and

Hinton (2007); Collobert and Weston (2008); Turian et al. (2010); see Bengio (2008) for an
overview.

11As it is the case for the vocabulary of pre-trained word vectors available for download at
the official word2vec website inc. (2013). This vocabulary contains all the word forms seen in
the corpus (for instance, “house” and “houses” are two different words of the vocabulary) as
well as proper names and phrases such as “college grads”, “geographically dispersed”, “Volga
river” or “Chief Executive Steve Ballmer”. The vocabulary is ordered by the frequency of
words and phrases in the training corpus. The models preceding word2vec were however of a
much smaller scale.
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Yet, if, as we have seen, tasks are essential to train NN models, since they
provide the loss function that permits to adjust their parameters, how could we
then train those new word vector representations independently of any specific
task? In other terms, what could be the relation between input and output
vectors that can orient the training of perfectly generic word representations?
The answer was to base the training on the relation between a word and its
context words within a given corpus.

The idea of a distributed representation of words was not new at that time,
constituting, for instance, an essential part of the connectionist program laid
out by Rumelhart and McClelland in Rumelhart and McClelland (1986) (cf.
also Hinton (1986); Elman (1996)). Elman Elman (1990) had, in turn, pro-
posed the idea of producing such representations using NN models.12 The new
advances in deep NN during the 2000s provided however a new general setting
in which word vector representations could be thought, designed and tested as
generic representations for the vast majority of the tasks relevant to compu-
tational linguistics. Training such vector representations remained nonetheless
computationally expensive and the high requirements in terms of training data
made them unsuitable for real-life applications.

A turning point occurred in 2013, when Tomáš Mikolov and colleagues at
Google,13 released a set of pre-trained vectors and a software package distri-
bution implementing two significantly efficient models, which have since been
popularized under the name of their software package distribution: word2vec
inc. (2013). The models were introduced in a series of papers Mikolov et al.
(2013e,a,d) and extend the main idea that emerged from the work of the previ-
ous decade: in the Skip-gram model, a network is trained to predict the context
words of a given focus or center word; conversely, the Continuous Bag Of Words
model (CBOW ) aims at predicting the center word given the set of context
words around it.

Take, for instance, the Skip-gram model. One-hot vector representations
are used for both the input center word chosen in the corpus, and the output
context words surrounding it,14 and only one intermediate or hidden layer is
trained.15 The input one-hot vector is then transformed through randomly
initialized parameters into a low-dimensional vector16 (the hidden layer), which
is in turn similarly transformed into an output vector of as many dimensions
as the size of the vocabulary, and finally normalized so as its components can
be interpreted as a probability distribution over the vocabulary.17 The error
between this output vector and each one of the one-hot vectors corresponding
to the context words is then used to adjust the parameters of the network
through backpropagation. After that process is finished for one particular word
with respect to its context, the network is fed with the next word in the corpus,
trying to predict its own context, and the process is repeated with every word of

12The study of the connectionist image of language falls out the scope of the present paper.
For an analysis convergent with the one we elaborate here, see Maniglier (2016).

13Google had officially adopted deep NN technology for speech recognition the year before
Jaitly et al. (2012).

14A window size is defined in advance, determining the number of words to be taken as
context words immediately to the left and to the right of the chosen word.

15In this sense, the NN implementing the model is “shallow”, i.e. not “deep”.
16Typically of dimension d = 300, also defined in advance.
17Standard normalization function is softmax. In the case of word2vec, more efficient ver-

sions are used, namely hierarchical softmax and negative sampling.
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the corpus until the minimization of the error reaches a stable state, starting over
from the beginning of the corpus, if necessary, when the last word is attained.

After the training process is finished, the set of intermediate low-dimensional
vectors corresponding to each of the input words provide the sought dense vector
representations. Thus, while the word “house” was previously represented by a
one-hot (very) large and sparse vector indexing its place in a vocabulary, now
the same word will be represented by a dense low-dimensional vector given by
the hidden layer of this network, whose first and last components, in the case
of this particular model,18 are as follows:

vhouse =(0.157227,−0.0708008, 0.0539551, . . . ,−0.041748, 0.00982666,−0.00494385,−0.032959︸ ︷︷ ︸
300 dimensions

)

Although its main objective was to provide an efficient algorithm to train
NN models for NLP, the success and popularity of word2vec19 marked the tri-
umph of distributed vector representations over traditional methods. But more
importantly, the predominant position thus obtained by NN models of NLP
within those two respective fields provided the opportunity for the development
of novel perspectives concerning the relation between the formal objects inher-
ent to NNs and the nature of linguistic objects. In other terms, as we will see in
the next sections, the technical achievement of word2vec turned the use of NNs
for the treatment of natural language into the unexpected occasion of a mutual
intelligibility.

2.3 What can word embeddings do? The analogy behind
the similarity

As any other vector, (d-dimensional) word vectors can be represented as points
in a d-dimensional space. The coordinates of those points are given by the
components of the corresponding vectors. While atomic representations are
discrete (their vector components are either 0 or 1), the distributed vectors
produced by NN models live in continuous space (typically Rd), since their
components are real numbers (usually between −1 and 1). Moreover, index
vectors are, by definition, orthogonal to each other (i.e. each corresponding
point lies on a different dimension with respect to all the others). This implies
that no relation whatsoever between the words they represent can be derived
from their spatial configuration. In contrast, the density of the new vectors
provide the means for their spatial “embedding” to capture general linguistic
features associated with the relations between the words they represent. It is
this mapping of words into real space that motivates the generic denomination
“word embeddings” for dense word vector representations, in particular those
produced by NN models.

Drawing from those spatial properties, word embeddings are able to grasp
relevant linguistic features, starting with word similarity. Indeed, based on a
distance measure over Rd, such as the distance between two points (Euclidean
distance), or the angle between the lines that connect those points to the origin

18As provided by the word2vec package inc. (2013). It is important to bare in mind that
models resulting from different training procedures as well as from different training corpora
may differ substantially, and that there is no unique linguistic model for a language.

19Relying significantly on the exceptional computational and data ressources of a company
such as Google, which were not available to most researchers at the time.
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point of the space (cosine distance), the relative distance between word vec-
tors can be measured. Once those vectors have been fully trained on a raw
corpus as explained, it appears that their relative distance in the embedding
space correlates with the similarity or “relatedness” between the contents of
the corresponding words. For instance, in the Skip-gram model referred to
above, the 10 closest word vectors to the vector representation of the word
“house” using cosine distance20 are: “houses” (cosine distance = 0.292761),
“bungalow” (0.312144), “apartment” (0.3371), “bedroom” (0.350306), “town-
house” (0.361592), “residence” (0.380158), “mansion” (0.394181), “farmhouse”
(0.414243), “duplex” (0.424206), “homes” (0.43802).

This is a remarkable fact, since in a classical NLP representation of words
(such as index representation) every word is at the same distance from each
of the others, and their relatedness must rely on features external to the word
representation itself, such as annotations or handcrafted categorization. Word
embeddings have thus somewhat internalized the similarity relation between
words in their very representation. More generally, through relative distance,
relevant groups of words can be identified, clustered by their content within
that vector space, and different kinds of word categorization can take place
based on those spatial clusterings (see, for instance, Senel et al. (2017)). A
common method to explore and visualize such clusters in a 300-dimensional
space is to plot a projection of word vectors onto the most relevant directions of
variation of the space.21 Fig. 1 presents one of such projections of a selection
of word2vec vectors showing that words with similar content dispose in fairly
identifiable clusters (e.g. numerals, number words, temporal nouns, but also
pronouns, verbs, etc.).22

Relatedness, and in particular, semantic similarity between words, play a
decisive role in most NLP tasks, since it allows the model to rely on implicit
content rather than on rigid explicit expressions. From the point of view of
information retrieval, machine translation, classification or even part-of-speech
tagging, it is crucial to know, for instance, that the word “house” is similar to
the word “bungalow” (even if the corresponding written or spoken expressions
are not), or the word “catch” is similar to the word “caught” (while “natch” is
not similar to “naught”). More generally, capturing different aspects of simi-
larity between words is an evidence of the capability of the model to grasp the
meaning of the fundamental building blocks of language. For this reason, word
similarity has been regularly used as a privileged measure to asses the quality of
NLP models in the past. Somewhat unexpectedly, predictive word embedding
models such as word2vec were capable of attaining state-of-the-art levels at the
moment of their introduction, and even outperforming previous probabilistic
models in practically all similarity tasks, including semantic relatedness, syn-
onym detection and concept categorization (cf. Baroni et al. (2014); Schnabel
et al. (2015); Levy et al. (2015)). Those results are surprising not only because
of the capacity of a brand new technique to surpass well-established ones, but

20The cosine distance between the vectors v and u is defined as: cosine distance(u, v) =
1− v.u

∥v∥∥u∥ , where x.y is the dot product between the vectors x and y and ∥ · ∥ is the norm of

the vector.
21Computed through techniques such as Principal Component Analysis (PCA) or T-

distributed Stochastic Neighbor Embedding (t-SNE).
22An on-line tool for visualizing such projections can be found at

https://projector.tensorflow.org.
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word2vec t-SNE projection

Figure 1: T-SNE two-dimensional projection of the word2vec vectors represent-
ing a selection of the most frequent words in its training corpus.

most of all because of the frugality of the means by which the new approach
was able to do it. Indeed, while traditional models had reached high levels of
performance only after several decades of careful design and fine tuning over
specific tasks, relying in most of the cases on external knowledge, handmade
rules and supervised learning out of manually annotated corpora, NN word em-
beddings are merely based on a simple unsupervised predictive task requiring
only word contexts automatically extracted from almost raw linguistic corpora
with remarkable computational efficiency.

The capacity of models like word2vec to outperform existing models at tradi-
tional tasks was a proof of the fertility of distributed word vector representations
and confirmed that NN models could indeed have a place in the landscape of
computational linguistics. Still, this success could hardly be more surprising
than one of the many technical improvements to which such a field is familiar
with. Yet, there is a sense in which word2vec was capable of going beyond its
predecessors, including the NN tradition. Indeed, other than remarkable per-
formance at already existing tasks, the newcomer was able to reveal a deeper
linguistic significance of metric relations in the embedding space in what has
come to be known as the analogy task.

The idea of analogy within this framework relies on the fact that, like any
other vector, word vectors can be the object of arithmetical operations; in other
terms, they can be added, subtracted or multiplied. Of course, there is no
reason, in principle, that arithmetic operations between vectors represent any
linguistic relation whatsoever between the words those vectors represent (not to
mention semantic relations); at least not any more than does the alphabetical
order of words in a dictionary. However, Mikolov and his colleagues noticed that
if, for instance, the word vector for “man” is subtracted from that of “king”, and
the result is then added to that of “woman”, the closest vector to the resulting
vector is the one representing the word “queen”. In other terms, we have that:

vking − vman + vwoman ≈ vqueen
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Figure 2: Offset representing the gender relation, revealed in the embedding
space by a PCA projection.

Or, what is practically the same:

vking − vqueen ≈ vman − vwoman

Far from being an isolated event, the same arithmetic relation holds for a
great number of analogous cases. Thus, we also have that the vectors corre-
sponding to the couples prince : princess, landlord : landlady, bull : cow, etc.
bear approximately the same linear relation as those of king : queen and man
: woman. Geometrically, such relation appears in the embedding space as a
regular “offset” between pairs of words, in such a way that the common relation
that holds between those two series of words (in this case, the relation between
male and female, or gender) could be itself represented by a constant vector
along the direction of that offset (fig. 2).

This surprising analogical property of word vectors has been shown to hold
for a remarkable number of semantic relations. If we come back to our example
of the vector representation of “house”, we can find, for instance, that:

vhouse − vcity + vcountryside ≈ vfarmhouse

Typical analogies attested in word2vec are of semantic nature, such as capi-
tal cities (China : Beijing, Russia : Moscow, Poland : Warsaw, ...), professions
(Einstein : scientist, Messi : midfielder, Picasso : painter, ...), chemical nomen-
clature (copper : Cu, gold : Au, ...), company CEOs (Microsoft : Balmer, Apple
: Jobs, ...) or typical national dishes (Japan : Sushi, Germany : Bratwurst, ...).
However, without any modification of the training objective, the same vectors
are capable of accounting for a large series of syntactic forms as well. Word2vec
was thus able to grasp analogies between superlative forms (big : biggest, good
: best, ...), verb tenses (fall : fell, take : took, ...), oppositions (possibly : impos-
sibly, ethical : unethical, ...), plural nouns (mouse : mice, dollar : dollars, ...)
and many others.23

23Details of the different kinds of semantic and syntactic analogy relations can be found in
Mikolov et al. (2013d); Schnabel et al. (2015).
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Figure 3: Pattern in the embedding space (word2vec) corresponding to the
comparative category (base, comparative and superlative forms).

The analogical relations in continuous vector space revealed by word2vec
represented such a conceptual novelty for the field24 that the corresponding
analogy task became almost instantly a crucial internal evaluation method for all
NLP models. Since then, the efficacy of the new NN word embeddings has been
proved in most NLP tasks (cf. Pennington et al. (2014); Baroni et al. (2014);
Schnabel et al. (2015)) and a great number of improved models directly based
upon, built on top of or inspired by the mechanisms and results of word2vec
have been proposed Pennington et al. (2014); Levy et al. (2015); Bojanowski
et al. (2016); Nickel and Kiela (2017); Peters et al. (2018); Howard and Ruder
(2018); Devlin et al. (2018).25

The intensive research the success of word embeddings motivated could not
but push the original Skip-gram and CBOW models to a progressive obsoles-
cence. Yet, if we are more interested in the conceptual and philosophical conse-
quences of the adoption of new techniques, rather than the mere improvement
of efficiency standards, we can observe that by raising the conception of dis-
tributed vector representations to the state-of-the-art level, word2vec brought
back to the forefront of linguistic thought the combined idea that the implicit

24As pointed out in Schnabel et al. (2015), the analogy task was previously conceived as a
classification problem, for instance in Turney (2008).

25Other than increasing the performance of linguistic tools, such a profusion of models
brought about important analytical insights into the mechanisms of NLP and of NN models in
particular. Incidentally, they revealed a fundamental fact of linguistic models that should not
be overlooked: in spite of a relative equivalence or convergence on elementary results, no two
models are identical. In the specific case of NN word embeddings, the non-deterministic nature
of the training procedure can yield diverging models even with identical training parameters.
Such a disparity is not only related to the irregular behavior of those models, but also to
the deep problem of the unity and homogeneity of language itself. For this reason, the facts
revealed by word embeddings which will interest us in the following pages should neither be
ascribed to a single model, nor to the nature of a unified and homogeneous language, but to a
common property of a family of related but differing models with respect to the possibility of
general yet partial reconstructions of the underlying mechanisms of specific language practices.
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word2vec PCA projection: Irregular verbs

Figure 4: Pattern in the embedding space (word2vec) corresponding to conju-
gation of irregular verbs.

organization of language can be mirrored not only by a space of local seman-
tic similarities, but more fundamentally, by an emergent structure underlying
that space constructed in a simple and unsupervised way. From a conceptual
viewpoint, it is this idea that gives word embeddings their full significance and
power.26 Indeed, one only has to take a quick look at the present state of the
field to realize that, let alone internal evaluation methods and constant increase
in performance on traditional tasks, the most original, promising and stimu-
lating results since the introduction of NN word embeddings concern global
configurations within the embedding space rather than local applications of the
similarity and analogy task as such. Starting with Mikolov et al. Mikolov et al.
(2013d), who indicate that not only analogical relations but also compositional
ones can take place as a linear relation in embedding spaces. For instance:

vRussia + vriver ≈ vV olgaRiver

or

vGermany + vcapital ≈ vBerlin.

Moreover, the work of Pennington et al. Pennington et al. (2014) suggests that
the entire comparative category of English (i.e. the base or positive, the com-
parative and the superlative forms of adjectives) defines a pattern or even a
two-dimensional subspace within the word vector space (see fig. 3 for an illus-
tration of this fact using a PCA projection of word2vec). Similarly, Mikolov et

26This idea is not entirely new. Accompanied by a significant increase in computational
capabilities, the resurgence of empiricist, frequentist, corpus-based and emergentist trends in
linguistics in the last decades has sufficiently shown the strengths of all kinds of data-driven
approaches to language structure. For an overview of those different trends, see Elman (1996);
Bybee and Hopper (2001); McEnery and Wilson (2001); MacWhinney (1999); Chater et al.
(2015). The novel means by which word2vec and alike models connect unsupervised treatment
of corpora and derivation of a global implicit structure are however endowed with their own
originality.
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Figure 5: Correspondence between word embeddings of different languages.
Credit: Mikolov et al. (2013b).

al. Mikolov et al. (2013c) suggested that the conjugation of verbs, even if irreg-
ular, also defines a coherent subspace (see fig. 4 for an analogous illustration).
Even more strikingly, several works Mikolov et al. (2013b); Luong et al. (2015);
Jansen (2017) explored the possible correspondence between embedding spaces
of different languages, suggesting a certain invariance with respect to relative
positions of words across multiple word vector spaces (see fig. 5). Moreover,
recent works on semantic change Kulkarni et al. (2014); Hamilton et al. (2016)
were able to trace the alteration of meaning of words over the last centuries
through the modification of the relative position of their vector representations
in the embedding space with respect to corpora of different epochs (see fig. 6).
Finally, Hewitt and Manning Hewitt and Manning (2019) provide evidence of
the fact that syntax trees are encoded, modulo a linear transformation, in the
embedding space produced by recent models.

Certainly, as thought-provoking as those research orientations might be, they
should not make us underestimate the inherent difficulties of word vector rep-
resentations to grasp the most intimate mechanism of natural language. Any
attempt to extend the operations of word embeddings outside local, specific
and well-controlled conditions is likely to encounter innumerable obstacles, and
hence can barely be relied upon in its present state for concrete real-world ap-
plications. Several critical assessments of NN word embeddings have pointed
out important limitations in this sense, such as their significant sensibility to
different similarity measures, the non-reversibility of the analogy task (e.g.
vfarmhouse − vcountryside + vcity ≈ vbungalow ̸= vhouse), their task dependency,
or their lack of consistent performance across downstream tasks (cf. Schnabel
et al. (2015); Linzen (2016); Gladkova et al. (2016)). Moreover, studies such as
Levy and Goldberg (2014a,b); Levy et al. (2015) convincingly show that most
of the results and performances achieved by NN models can be obtained by
previously existing models if properly adjusted following implicit parameters of
the former.

However, from a conceptual or philosophical perspective, the implications
of word embeddings outreach their practical outcomes. Even if their most sug-
gestive results are not entirely reliable in their current state, even if they can
be proved, in hindsight, not to depend on the specific technology of NN, the
success of word vector models made evident in the wake of word2vec brought
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Figure 6: Visualization of semantic change based on word2vec. Credit: Hamil-
ton et al. (2016).

to the surface a novel combination of three aspects of linguistic analysis that
was practically absent as such among the principal research orientations of the
field before their arrival. First and foremost, the renewed idea that the recon-
struction of the underlying organization of language requires virtually no more
human intervention than the one implied in the most ordinary use of language
as recorded in an almost raw linguistic corpus. Second, the evidence that in
the reconstruction of that organization both semantic and syntactic contents of
words are determined at the same time and as the result of the same procedure,
which requires that any clear-cut distinction between syntax and semantic be
reconsidered and warns, in turn, against any reduction of word relatedness to
semantic similarity. Finally, the perspective that word vector representations
are not simply disposed or organized in the vector space in such a way that
more or less stable neighborhood relations capture more or less significant sim-
ilarities, but that the vector space itself is structured following relatively precise
directions at the crossroads of which those syntactic and semantic contents are
established.

For that reason, if the uncontroversial improvement word embeddings brought
about as standard input for most NN models has already earned them the place
of the bedrock in the new epoch of NLP, it is possible that the strength and the
freshness of the image of language that they carry with them hold the capacity
to disquiet the one that has governed our philosophical approach to language in
most areas of knowledge for almost a century.

3 Why does it work? The implicit mechanisms
of word embeddings

And yet, the attempts to shed some clear light on that image have been rel-
atively infrequent compared to the profusion of technical discussions around
word embeddings within this new NN framework. Indeed, epistemological and
philosophical reflections are scarce, at best, in the literature of the field. That
lack of comprehensive conceptual insight is accentuated by the fact that, at first
sight, it is not at all clear why word embeddings resulting from NN models work
the way they do. This is not to say that something in the model is unknown.
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On the contrary, models such as word2vec are, in a way, almost too simple. Yet
there seems to be a disproportion between the simplicity of the models and the
complexity of the results attained that opens too wide a gap to be spontaneously
covered by merely technical explanations.

Given the difficulty of the task, most of the elucidating efforts have been
then oriented to answer the question “why does it work?” by identifying the
action of already known models under the mechanisms of the new approach.
A glance at those results constitute therefore a first step toward the theory of
meaning that lies behind NN word embeddings.

3.1 The figure in the carpet: The factorization of
word-context matrices

In the last few years, a number of studies, such as Li et al. (2016); Smilkov
et al. (2016); Park et al. (2018); Liu et al. (2018); Chen et al. (2018), developed
several visualization tools intending to provide a more intuitive understanding
of the way in which word2vec training progressively organizes vectors in the
embedding space, with a special focus on the emergence of linear substructures
inducing word analogy. In spite of their undeniable heuristic value and utility,
those tools put the accent on the optimization of the model, rather than on the
intelligibility of its procedures with respect to linguistic structures as such. Less
intuitive approaches turn out to provide better insight in this case.

If we come back to Mikolov’s et al. original papers, the only explanatory
attempt one can find in those pages, other than external references, concerns
specifically the technical aspects of the additive compositionality (i.e. vRussia+
vriver ≈ vV olgaRiver). Mikolov finds an explanation of the linear properties
of vectors—qualified as “surprising” by the author on multiple occasions—by
referring it to the specific training objective of his model (Mikolov et al., 2013d,
§5). For instance, in the Skip-gram model,27 each word vector is trained to
capture the distribution of its context words (i.e. the frequency in which all the
other words actually appear within its context throughout the corpus), and a
probability distribution is computed out of it (i.e. the probability for every word
in the vocabulary to appear in the context of the given word). Now, if x and y
appear frequently in the context of a, as well as y and z in the context of b, the
conjunction of a and b will yield the intersection of their respective contexts,
which will thus contain y and exclude x and z. By well-known probability
properties, such conjunction corresponds to the multiplication of their respective
probabilities. Since word vectors representing a and b are in a logarithmic
relation to those probabilities (through the softmax layer), such conjunction
will then correspond to the addition of the vectors. Adding a and b will then
result in a vector similar to y. It follows that “if ‘Volga River’ appears frequently
in the same sentence together with the words ‘Russian’ and ‘river’, the sum of
these two word vectors will result in such a feature vector that is close to the
vector of ‘Volga River’” (Mikolov et al., 2013d, p. 7).

Other than technical aspects concerning the way traditional probabilities
are encoded in NN models, this explanation does little more than associate the
capacity of vectors to capture linguistic meaning with the statistics of contexts
within a corpus, which was already fairly evident from the basic procedures of

27A similar argument holds for CBOW.
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the model. Instead, better insight can be obtained by considering an alternative
word embedding model called GloVe (for “Global Vectors”), proposed by the
Stanford NLP team, in the wake of word2vec Pennington et al. (2014). This
work associated the fundamental idea of word2vec with well-known non-NN
NLP models based on the analysis of co-occurrence matrices. In this way, the
team was able to obtain a set of word vector representations with comparable
results by setting the objective of the NN as that of predicting, not the context
words out of a given word (or vice versa), but directly the values of a matrix
containing the global frequencies of co-occurrence of words (within a context
window of a given size) in a corpus. In other terms, given the ith and the jth

words of a vocabulary as input, the NN is asked to predict, not another word in
their context, but their total number of co-occurrences within a corpus, previ-
ously computed in a co-occurrence matrix where such number occupies the cell
at the intersection of the ith row and the jth column. The fact that the result-
ing vectors, constructed in such a different way, are capable of performing the
same tasks as word2vec with comparable performance reveals two noteworthy
situations. First, that the ultimate reason for vectors to behave the way they
do, and capture meaningful linguistic structure, relies on the global statistics
of word contexts within a corpus.28 And second, that NN architectures play
only a secondary role in this relation between linguistic structure and global
statistics. They seem to provide nothing more than an efficient way of encoding
the information already present in the co-occurrence matrix.

The idea that essential aspects of linguistic structure and meaning can be
obtained by probabilistic analysis is far from being new, and plainly trivial in
the field of NLP. Yet, what the analysis of GloVe suggests is that the remarkable
results of word embeddings with respect to other existing models hinge upon a
specific data structure, namely that of co-occurrence matrices, rather than, say,
plain n-grams or Markov models, longtime privileged by classical probabilistic
models.

Levy and Goldberg Levy and Goldberg (2014a) provided a more direct and
detailed confirmation of this view. Through a formal analysis of the Skip-gram
model, the authors showed that word2vec is implicitly factorizing a word-context
matrix, in other terms a matrix of a similar type as that of GloVe, in which
rows correspond to words and columns to contexts with respect to those words.
Furthermore, the authors revealed that the cells of the implicit matrix of the
Skip-gram model do not correspond to the raw count of the corresponding word-
context pairs, but to a certain measure of the strength of their association. The
authors identify that measure as being essentially the Pointwise Mutual Infor-
mation (PMI), a common statistical function reflecting the disparity between
the probability of the joint distribution between two variables (in this case: word
and context) with respect to their respective individual distributions.29

That word2vec is implicitly factorizing a PMI matrix means that the result-
ing word vectors can be understood as the rows of a low-dimensional matrix,
which, multiplied by another matrix, results in (a close to optimal approxima-
tion of) that PMI matrix. Because of the way in which such a factorization takes
place, that low-dimensional matrix can function as a substitute for the general

28Schnabel et al. Schnabel et al. (2015) noted that NN word embeddings encode a great
amount of information about word frequencies.

29Formally, PMI(x, y) = log
p(x,y)

p(x)p(y)
.
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matrix, since the former encodes the most relevant information of the latter.
Incidentally, the authors conjecture that the better results word2vec exhibits in
the analogy tasks, compared to other well-know matrix factorization techniques,
can be explained by the fact that, unlike the latter, the factorization performed
by the Skip-gram model is weighted, increasing the strength of word-context
pairs that are more frequent. What is more, as already mentioned, in Levy
and Goldberg (2014b); Levy et al. (2015) the authors show that, understood
as linear combinations of three pairwise word similarities, analogy relations can
be also (and even better) captured by explicit (i.e. unfactorized) word-context
matrices, and that by adopting some of the implicit parameters of NN mod-
els, traditional models based on word-context matrices can achieve comparable
performances.

It appears then that the secret of word2vec and alike word embedding models
relying on NN architectures, resides in the particular way in which the distri-
bution of linguistic units in a corpus are connected to one another through a
word-context relation, which can be properly grasped by the connection between
the rows and the columns of a word-context matrix. As shown by the relevant
literature, the components of a word vector are nothing more than an efficient
encoding of the global distribution of the contexts of that word throughout a
corpus. If words can be adequately represented as dense vectors, and if signifi-
cant aspects of linguistic structure can be thereby mirrored by the space those
vectors define, the reason must then be sought in the relation those word-context
matrices maintain with natural language.

3.2 Inside the matrix

PMI matrices are only a special case of word-context matrices. The latter are
far from being new in the landscape of NLP: they are the common denominator
of a family of linguistic models whose origins go back to the early 1970s. A
substantial renewal of that approach during the 1990s earned them the place
of state-of-the-art at several NLP tasks, and at information retrieval and word
similarity most particularly, until the recent arrival of the new generation of NN
models to the field. Significantly, in matrix models, unlike classical statistical
(n-gram) models, words are also represented by vectors. Hence the name Vector
Space Models (VSMs), generically qualifying the whole family of models.

In a paper that would become influential within the research community
of NN word embeddings, Turney and Pantel Turney and Pantel (2010) draw a
fairly comprehensive view of the history and variety of VSMs. As they justly
point out (Turney and Pantel, 2010, p. 143), vectors had already been widely
used as representational tools in the early days of cognitive science and machine
learning. Yet an entirely new approach emerged when frequencies of words with
respect to contexts within a corpus were used as components of those vectors, an
idea that was introduced by the SMART Information Retrieval System Salton;
Salton et al. (1975). Given that the system was designed for information re-
trieval, the contexts corresponded to documents over which queries could be
made. Thus, the terms susceptible to be the object of a query were represented
by row vectors in a matrix whose column vectors represented all the docu-
ments susceptible to match a query. Each cell mij of the matrix M registered
the number of occurrences of the ith term within the jth document. Hence, a
term in such a system is represented by nothing more than the documents in
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which it appears (weighted proportionally to the frequency of appearance), and
conversely, documents are represented by nothing more than the words they
contain. Being a set of terms, a query is then conceived as a sort of document,
whose similarity can be computed with respect to all other documents in the
embedding space of document vectors (i.e. column vectors). The result is a list,
sorted by similarity, of the most relevant documents matching the query.

The success of this approach encouraged the development of a great variety of
VSMs during the past decades, in which rows and columns could represent differ-
ent kinds of pairs of entities: terms-documents, words-contexts, persons-items,
pairs of terms-word patterns, etc. In particular, Deerwester et al. Deerwester
et al. (1990) realized that a word-by-document matrix could also be used to de-
termine the similarity between words instead of documents, by comparing the
rows rather than the columns of the matrix. Several forms of column contexts
were proposed, which proved to be best suited for this new task, going all the
way down from documents to individual words as contexts of the initial words,
measured within a fixed window of words Schütze (1992, 1993); Qiu and Frei
(1993); Lund and Burgess (1996). Sahlgren Sahlgren (2006) provides a good
historical overview of these approaches, which are commonly referred to as Dis-
tributional Semantic Models (DSMs) to distinguish them from VSMs, mostly
oriented to information retrieval. Moreover, he observed Sahlgren (2006, 2008)
that word-by-word matrices have a different behavior concerning word similar-
ity, compared to word-by-document ones, since the latter tend to measure word
co-occurrence within the same contexts, while the former is rather oriented to
capture their substitutability in the contexts considered.30

We will have the opportunity to discuss the relevance of the distinction
between word-by-document and word-by-word matrices in the following pages.
For the moment, what is important in order to understand the generality of word
vector representations put forth by NN word embeddings, is to focus on the most
general mechanisms underlying all those models as their common denominator,
irrespective of the specific task they are intended to solve. From what precedes,
it appears that such mechanisms are essentially determined by the constitutive
relation between terms and contexts as it is expressed by that between the rows
and columns of a frequency matrix. Thus, we will henceforth use the expression
“matrix models” (MMs) to refer to those NLP models that rely in a decisive way
on that row-column relation, without consideration of other specific properties.
For the same reason, unless stated otherwise, we will use the word “terms”
to refer generically to the units represented by the rows of those matrices and
“contexts” for those represented by the columns, even in the cases in which the
latter are of the same type as the former, like in word-by-word matrices.31

Turney and Pantel’s survey provide a general description of the usual proce-
dure followed in elaborating a MM. After a preliminary linguistic preprocessing
that includes tokenization (i.e. division of the corpus in elementary units, such
as words), and in some cases also normalization (case folding, stemming, etc.)
and annotation (POS tagging, disambiguation, etc.) of the raw text in the cor-

30Lenci Lenci (2018) gives a recent account of existing DSMs with a special attention on
the kind of matrix they employ.

31We follow here the general perspective of Turney and Pantel (Turney and Pantel, 2010,
p. 148): “In general, we may have a word–context matrix, in which the context is given by
words, phrases, sentences, paragraphs, chapters, documents, or more exotic possibilities, such
as sequences of characters or patterns.
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pus, the generic steps of the mathematical processing of MMs are roughly as
follows. First, the frequency matrix is built, by simply counting the number
of times the terms occur within the predefined contexts. Then those frequen-
cies are weighted following information-theoretical principles according to the
specific goal of the model (in order to give, for instance, higher impact to sur-
prising associations).32 Matrices resulting from the previous step are usually
extremely sparse (i.e. most of its components are zeros), since most of the
terms do not appear in most of the contexts. They also tend to be highly noisy,
since both rare and very common terms appearing in the corpus might happen
to have more impact than they should, due to the limitations of the corpus.
This situation entails several difficulties, in particular concerning possible gen-
eralizations of the model to data outside the corpus, but also related to high
computational costs. The third step in the procedure is therefore the “smooth-
ing” of the matrix, in order to achieve a sparsity and noise reduction, as well as
a dimensionality reduction. Finally, the resulting vectors—either rows (terms)
or columns (contexts), depending on the task—are compared using distance or
similarity measures, such as the already mentioned cosine or Euclidean distance.

But what exactly gives MMs their analytical power over linguistic units
(whether they are terms or contexts)? As already stated, in the initial frequency
matrix, the terms (represented by the rows) are only determined by the contexts
in which they appear (represented by the columns). If two terms appear in the
same contexts, and only in those, then those terms are indistinguishable from
the point of view of the model (they are represented by identical row vectors),
and the same is true of contexts with respect to terms. As a consequence, any
distinction between terms (resp. contexts) cannot but result from a difference
in the sets of contexts in which they respectively appear (resp. the sets of terms
contexts respectively accept). Terms and contexts stand therefore in a relation of
co-determination, contexts playing a discriminating role over terms, and terms
over contexts. It turns out that the similarity between terms or contexts can be
seen as an inverse effect of such discriminating effect : for a group of terms to
be similar in this configuration is nothing more than to be jointly distinguished
from other terms.33

Sahlgren Sahlgren (2008) correctly recognizes this inverse relation between
differences and similarities between terms. However, he seems to imply that
both points of view are equivalent.34 Yet, if similarity can indeed be viewed as
an effect of the discriminating action of contexts over terms, the converse is less
clear. For the notion of similarity, as it is usually conceived and used, tends to
suggest the idea of a loose equivalence relation. Indeed, given a set a of terms,
we tend to suppose that every term is similar to itself, if one term is similar to
another, the second is similar to the first, and if the second is similar to a third
one, so it is the first one. Of course, empirical results often show situations in

32As we have seen, PMI is one of the usual ways of determining the weights of the frequencies.
33The similarity between terms (resp. contexts) can be measured through the already

mentioned similarity measures among the corresponding row (resp. column) vectors. In
practice, dot product is the common measure in this case.

34For instance, when he argues that “Harris talks about meaning differences, but [. . . ] the
distributional hypothesis professes to uncover meaning similarities. There is no contradiction
in this, since differences and similarities are, so to speak, two sides of the same coin” (Sahlgren,
2008, p. 51, note 3); or when he affirms that “the distributional methodology is only con-
cerned with meaning differences, or, expressed in different terms, with semantic similarity.”
(Sahlgren, 2008, p. 37).
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Figure 7: Illustration of the co-determination between terms (rows) and contexts
(columns) in a term-context matrix.

which any of those three properties could fail; but in the vast majority of the
cases, similarity is nonetheless expected to provide a good approximation to a
classification of terms of which the partition of the embedding space remains
the privileged form (as manifested by the different clustering techniques at work
in the field).

Now, if instead of adopting the viewpoint of term similarity, we focus on the
discriminating action between terms and contexts as the fundamental mecha-
nism of MMs, we can see that there is much more to it than a simple classification
task. For it is evident that not one, but several contexts can contribute to the
differentiation of terms and vice versa, and that they can do so at different de-
grees. Therefore, a group of contexts strongly contributing to the discrimination
of a group of terms from the rest can be thought of as an underlying implicit
or latent feature affecting each explicit context at different degrees (namely, at
the degree at which each context contributes to discriminating that group of
terms from the rest). Given that different groups of contexts can contribute to
discriminating different groups of terms, the underlying features are multiple.
As such, they capture the manifold correlations between groups of terms and
groups of contexts.

Those correlations have no reason to generate a strict partition of the space
of terms or of contexts, since one subgroup of all the strong discriminant contexts
of a group of terms will certainly be discriminant for a different group of terms
while the remaining contexts will not (and the same is true for terms). Take for
instance the example of page 15 and suppose, in addition, that z and w appear
frequently in the context of c, and that, for all the existing terms other than a,
b or c it so happens that w, x, y and z do not appear in their contexts (fig. 7).
We will then have that x and y taken together discriminate (strongly) a and
(less strongly) b from the rest of the terms, while w and y discriminate (less
strongly) the three terms a, b, c from the rest. We can thus see that neither
the groups of terms {a, b} and {a, b, c}, nor the groups of contexts {x, y} and
{w, y} define a partition in their respective spaces (i.e. the space of terms and of
contexts), although their correlations define relevant discriminating dimensions
or features underlying both of them.35

Latent features are purely formal: their only content is their discriminating
effects over all the observable components of the corresponding spaces. Since

35Incidentally, notice that discrimination is not necessarily symmetric, which can be easily
seen by observing that {x, y} discriminate {a, b} but {a, b} discriminate {x, y, z} (likewise
{a, b, c} discriminate {w, x, y, z}, and not just {y, z}).
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they are also continuous (terms or contexts can be affected by them at differ-
ent degrees), the set of all those features can be best thought of as dimensions
defining a latent space. We can therefore see the latter as a virtual complex of
formal (i.e. not necessarily interpretable) features governing the actual articula-
tion of terms and contexts in the use of language. It follows that, if a similarity
relation between terms (or contexts) can be certainly drawn from this funda-
mental mechanism of MMs, the organization of that latent space could provide,
in addition, a global underlying structure to the embedding space, such as the
one manifested by the analogy task of NN word embeddings. Thanks to that
structure, terms would not only be disposed in similarity neighborhoods but
organized through complex system of differences.

The above example shows that the dimensions of the latent space are not
reducible to any single partitioning of terms or contexts. It is in this sense that
those dimensions are latent with respect to the explicit, manifest or observable
spaces of terms and contexts. Interestingly enough, that virtual discriminating
space need not be postulated a priori or handcrafted, since relevant dimensions
of it can actually be formally derived from the observed practice of language
as it is captured by a term-context matrix, in such a way that an explicit
representation of those dimensions is produced. A common way of doing so is
matrix factorization. Through factorization, the original matrix is presented as
the multiplication of two or more matrices, one of which (at least) is expected
to exhibit strong regularities underlying the original matrix.

To get an idea of how matrix factorization works, we can consider one of the
most prominent factorization methods, namely Singular Value Decomposition
(SVD). The introduction of SVD within VSMs by Deerwester, Landauer and
others Deerwester et al. (1990) in the 1990s resulted in the model known as La-
tent Semantic Analysis (LSA), which motivated the renewal of the field to which
we have referred earlier.36 Based on linear algebra tools,37 SVD extracts from
the initial co-occurrence matrix M three matrices U , Σ and V , such that M
is the result of a certain multiplication of those matrices, namely M = UΣV T

(where V T is the transposed of V ). Intuitively, the rows of the first matrix
U correspond to the terms (as in the initial matrix M), but the columns now
contains orthonormal (i.e. normalized independent) vectors, corresponding to
latent or virtual dimensions ordered by decreasing discriminating power. Like-
wise, the rows of the matrix V (i.e. the columns of the matrix V T ) correspond
to the initial contexts of M , and its columns to orthonormal dimensions ordered
in the same way. The remaining matrix Σ is a diagonal matrix, the values of
the diagonal of which can be interpreted as the discriminating strength of the
corresponding dimensions, in decreasing order. Given that the dimensions (the
columns of the matrices) are ordered by their decreasing discriminating strength,
taking only the first k dimensions results in a lower-dimensional approximation

36LSA terms were taken to be words and contexts were documents or paragraphs. The
latent space derived through SVD was therefore singularly suited for the task of information
retrieval. But the idea of a latent space as we have presented it is not essentially tied to such
a task, no more than to word-by-document matrices, as neither is SVD as a general technique
for deriving relevant dimensions of that space. The generality of LSA methods is not unknown
to Landauer and his team, as reflected in Landauer et al. (2007), where the relevance of LSA
for other models and tasks is assessed.

37The technical aspects of SVD procedure fall outside the scope of the present paper. For
details, one might consult Deerwester et al. (1990); Landauer et al. (1998, 2007).
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of the initial matrix M .38

Matrix factorization is one of the preferred smoothing techniques of MMs
(the third step in the procedure described by Turney and Pantel). As such, it
has the effect of transforming particular data corresponding to a limited corpus
in such a way that it approximates the most relevant features of language in
general. What is at stake here is the possibility of extracting abstract rules of
language from purely empirical data. In other words, if there is a place where the
structured space underlying word embeddings can emerge in an unsupervised
fashion from raw corpora, this is it. As we have seen, Levy and Goldberg showed
that the Skip-gram model could be understood as a factorization procedure and
compared its results to an SVD factorization of its implicit word-context matrix.
Indeed, like word embeddings, the vectors produced through matrix factoriza-
tion are dense, low-dimensional, computationally efficient and best suited for
generalization outside the observed data. It appears then that the remarkable
properties exhibited by word2vec and other NN word embedding models are
indeed intimately related to the way in which they reconstruct the dimensions
of the latent space governing the co-determination between terms and contexts
respectively represented by the rows and columns of a frequency matrix.

Yet, we have also seen that NN embeddings exhibited, at least at the moment
of their introduction, better performances than classic models based on SVD and
other related techniques, in particular in analogy tasks. Since factorization is
implicit (i.e. performed by indirect means) in NN models, its mechanisms re-
main somewhat obscure, hence it is not easy to tell what can account for that
superiority. We have already mentioned Levy and Goldberg’s conjecture con-
cerning the implicit strong weight given by the Skip-gram model to frequent
co-occurrences. It might also very well be that SVD is not the most adequate
way of producing an explicit representation of the latent dimensions of a lin-
guistic space.39 In this sense, Turney and Pantel (Turney and Pantel, 2010, p.
160) observe that SVD models presuppose that the elements of the matrix have
a Gaussian distribution, which is known not to be the case for words in natural
language. However, the authors also observe that PMI is approximately Gaus-
sian, thus explaining the better behavior exhibited by SVD with PMI matrices.
As we have seen, Levy and Goldberg have shown that the matrix underlying
word2vec was indeed a PMI matrix.

Other matrix smoothing techniques have been developed since the introduc-
tion of LSA, such as Probabilistic Latent Semantic Analysis Hofmann (1999,
2001) or Latent Dirichlet Allocation Blei et al. (2003), which have proposed
original methods for increasing the performance of term-context matrix anal-
ysis in ways that are not foreign to the procedures of NN word embeddings.
We have also mentioned that Levy et al. Levy and Goldberg (2014b); Levy
et al. (2015) convincingly show that most advantages of NN methods rely less
on the model itself than on implicit hyperparameters—such as dynamic context
windows, context distribution smoothing or eigenvalue weighting—which can be
transferred to previous MMs to obtain comparable performances, even without
recourse to factorization techniques or any dimensionality reduction.

The fact that certain models can achieve competitive results without recourse

38In fact, it can be shown that such k-approximation is the best possible approximation,
i.e. minimizes the approximation errors with respect to the Frobenius norm.

39See, for instance, Caron (2001); Bullinaria and Levy (2012); Österlund et al. (2015)
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to any explicit representation of the latent space is certainly remarkable. And
indeed, this may lead to the impression that in such cases no implicit dimensions
are involved in the capacity of those models to reconstruct essential aspects of
language. This is specially the case for models based on word-by-word matrices,
and one of the reasons they are thought to be substantially different from those
built upon word-by-document ones. However, that no explicit representation of
implicit dimensions are needed in those particular models does not mean that
such dimensions are not at work in the structure of the data to which those
models are applied (contributing, then, to their effectiveness). Consider, for
instance, the high co-occurrence frequency of the words “he”, “she”, “it” on
one side, with respect to words like “says”, “makes”, “plays” or “talks” on the
other. The fact that a model can successfully account for the similarity of the
words belonging to one or the other of those two groups without constructing
an explicit representation corresponding to “third person singular verbs” or
“third person singular personal pronouns” does not mean that such features do
not play any role in the reasons explaining that success. Indeed, frequency of
co-occurrence seems to be practically all those models rely on for establishing
word similarity, which in this case has no other source than the existence in
the English language of an implicit dimension of the “third person singular”
relating, among others, personal pronouns to verbs.

More generally, it seems that the efficacy of MMs to grasp essential aspects
of linguistic structure is tied to the way in which the complex co-determination
between rows and columns is capable of capturing those latent dimensions of
language, whether they construct explicit representations for them or not. How-
ever, there is a point in which the properties derivable from an explicit represen-
tation of the latent space are irreducible to the ones of models not making any
use of them. If we come back to the exemple presented in fig. 7, and consider
the terms a and c, we can see that, from the point of view of observable (i.e.
not latent) contexts, these terms are as different as they can be. If similarity
was computed based on those vector representations, the result would be that
those terms are not similar at all. However, if it so happens that a significant
number of terms other than a, b and c, and only them, frequently appear in
the context of all w, x, y and z, whatever those contexts represent (documents
or words), and in no other, then those four contexts would naturally define a
single latent dimension, in which case the similarity of a and c could be easily
established with respect to that single dimension. To get and intuition of this
remarkable fact, take for instance a =“she”, c =“we”, w =“say”, x =“says”,
y =“makes”, z =“make”. In the case of this example, this means that if the
connection between “say”, “says”, “make” and “make” can be established by
distributional means other than the distribution of “she” and “we” (which is
highly probable, since they are all verbs), then the relation between these two
terms can in principle be captured by the model, even if their distributions are
perfectly disjoint.40

That irreducible capacity of latent dimensions to connect terms that do not
share any context reveals another decisive property of the latent space MMs are
able to grasp, namely the global principle guiding the definition of their units.
By comparing contexts only within the local scope of paris of terms, vector

40The same is true for a possible disjoint distribution of “say” and “make” with respect to
that of “says” and “makes” if the similarity of “she” and “we” can be established by their
joint distribution outside those contexts.
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representations based only on observable co-occurrence frequency are unable
to address the possibility of locally disjoint contexts (or terms) being globally
linked. This is, of course a remarkable possibility offered by MMs, and a source
of their potential strength. Its importance will become more and more evident
as we unfold the image of language that stems from the mechanisms of MMs as
we have just described them.

4 Toward a new image of language

4.1 The many uses of the distributional hypothesis

In the previous sections, we have seen that NN word embeddings were the re-
sult of what can be understood as a particular way of implicitly factorizing a
term-context matrix, yielding a set of low-dimensional vectors which define an
embedding space whose substructures suggest the capacity of mirroring those
of natural language. The analysis of the most elementary mechanisms of MMs
showed that such a factorization relates to a complex latent space governing
the co-determination between groups of terms and groups of contexts in a given
corpus. Moreover, it appeared that the dimensions of that latent space corre-
sponded to nothing more than highly discriminating axes underlying, yet derived
from, the discriminating action of observed pairs of contexts and terms.

But if after gaining this insight from MMs we are in a better position to
answer to the question “how does it work?”, the more philosophical question
“why does it work?” is still to be answered. In view of what precedes, this
question can now be reformulated as follows: how is it possible that a latent dis-
criminating space underlying the relations between terms and contexts in a given
raw record of linguistic performances succeeds in capturing a surprising amount
of linguistic properties, including syntactic regularities and structures, semantic
relatedness, isomorphic configurations between different languages and histori-
cal change? As already noted, most explanatory efforts within the recent NN
word-embedding literature have mainly focused on the technical specifications
that allow any one of those computational models to perform slightly better
than others in specific linguistic tasks. Yet if we want to disclose the image of
language animating the entire series of those models, we need to consider their
success as something more than a purely technical feat with respect to specific
aspects of language, and redirect that question to the nature of language it-
self. In other terms, to the question “why can computers understand natural
language?” we should direct our attention to natural language rather than to
computers, and ask: what must natural language be for the specific procedures
of MMs and word embedding models to succeed in revealing some of its most
essential aspects?

It barely deserves mentioning that this is not the way the community around
NN word embeddings tends to approach the problem.41 However, there is in-
deed one possible answer that one can find repeatedly wielded throughout the

41To get an idea of a rather widespread feeling within the NLP community in this respect,
it might be worth reminding here the “snappy” version of the words of Fred Jelinek, of the
IBM speech group, as reported in (Jurafsky and Martin, 2008, p. 189): “Every time I fire
a linguist the performance of the recognizer improves”. Let us better not try to know what
NLP computer scientists think about philosophers.
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literature, namely “the distributional hypothesis”, invariably referred to Zelig
Harris’s Harris (1970) and condensed into John Firth’s quote turned into a
motto: “You shall know a word by the company it keeps!” (Firth, 1957, p.
11). Although often restricted to this laconic reference within the NN commu-
nity, the distributional hypothesis has been the object of abundant discussion
accompanying the development of previous MMs. In his detailed treatment of
this question, Sahlgren (Sahlgren, 2008, p. 33-34), for instance, lists some of the
most representative formulations of that “set of assumptions about the nature
of language”: “words which are similar in meaning occur in similar contexts”;
“words with similar meanings will occur with similar neighbors if enough text
material is available”; “a representation that captures much of how words are
used in natural context will capture much of what we mean by meaning”; “words
that occur in the same contexts tend to have similar meanings”. Lenci (Lenci,
2008, p. 3), in turn, proposes the following statement for the same explanatory
principle: “The degree of semantic similarity between two linguistic expressions
A and B is a function of the similarity of the linguistic contexts in which A and
B can appear”.

All those different formulations of the distributional hypothesis point to one
and the same place: it is the constitutive relationship between language and
contexts that explains the capacity of MMs to grasp linguistic meaning. But
what exactly is a context? And what is its precise role in the production of
linguistic meaning? A common principle of explanation is given by what Lenci
calls a “‘usage-based’ perspective on meaning” (Lenci, 2008, p. 1), that is, the
idea that linguistic meaning is determined by the way language is used. This
perspective is not restricted to linguistic research but belongs more generally to
the philosophy of language, where, under the name of a “use theory of mean-
ing”, it is often attributed to Wittgenstein, and usually summarized as: “the
meaning of a word is defined by the circumstances of its use” (Manning and
Schütze, 1999, p. 17). In this customary version, those “circumstances” of use
count as the contexts with respect to which the distributional properties of lin-
guistic units (e.g. words) are determined. The image of language that emerges
from this common version suggests that natural language speakers use words
in different empirical or concrete situations and have a tendency to use similar
words—or more precisely words with similar meanings—in similar situations.
The result is a correlation between co-occurrence of words and similarity of
meaning which grounds the claim that, if a language model uses co-occurrence
in linguistic contexts as proxies for those circumstances, such a model has good
chances of succeeding in capturing their meaning. This image is also frequently
connected with a cognitive perspective anchoring the use of language to asso-
ciative faculties.42

Yet if we subscribe to such an image, a tension arises with respect to the
mechanisms underlying the effectiveness of word embedding models. Because,
from that point of view, what mediates between observable terms and contexts
in a linguistic corpus on one side and the linguistic contents a model can capture
on the other, is a formal latent global space defined by discriminating dimensions
rather than individual cognitive agents interacting with the environment. And
it is not easy to see how those two concurrent candidates to fill that gap between

42See, for instance, Spence and Owens (1990), for a classical study on the correlation between
co-occurrence and association strength.
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distribution and meaning could be articulated into one and the same explanatory
principle. Moreover, while in the case of latent spaces the notion of linguistic
context admits a rigorous sense, the image of language stemming from that
ordinary association between the distributional hypothesis and a use theory of
meaning stands on a doubtful parallel between contexts as concrete situations
in which a cognitive agent makes use of language, and linguistic contexts as the
set of words accompanying the utterance of another word.

Lenci’s account of the possible association between distributionalism and
usage-based theory of meaning Lenci (2008) proposes a more subtle image
than that customary conception, leading to a refined cognitive interpretation.
Through a comprehensive review of the different attitudes toward distribution-
alism in the literature, the author distinguishes two possible versions of the dis-
tributional hypothesis regarding its explanatory power with respect to linguistic
meaning, which differ precisely in the status granted to contexts as specifically
linguistic contexts. The “weak” version considers the distribution of words in
linguistic contexts as only correlated with the meaning of those words. From
this perspective, word meanings, supposed to be established by extra-linguistic
means, determine, as an external source, the “combinatorial behavior of words
in context” (Lenci, 2008, p. 14). This version is then compatible with the
ordinary understanding of use as an embedded cognitive practice,43 although
the relation between linguistic and extra-linguistic contexts is not necessarily
addressed as such. On the other hand, the “strong” version assigns a causal
role to contextual distributions with respect to linguistic content. More pre-
cisely, the idea is that “[r]epeated encounters with words in different linguistic
contexts eventually lead to the formation of a contextual representation as an
abstract characterization of the most significant contexts with which the word
is used.” The nature of the significant contexts of use intended here is not
specified, although Miller and Charles—to whom Lenci attributes this strong
version—mention pragmatic conditions among the dimensions contextual rep-
resentations are assumed to include (Miller and Charles, 1991, p. 5), suggesting
that at least some extra-linguistic features are involved therein. Yet contextual
representations are, in this view, extra-linguistic in a stronger sense, since such
representations are conceived as abstractions resulting from linguist contexts,
finding their source in the cognitive faculties of an individual agent. In the
words of Miller and Charles (Miller and Charles, 1991, p. 5): “a word’s contex-
tual representation is not itself a linguistic context, but is an abstract cognitive
structure that accumulates from encounters with the word in various (linguis-
tic) contexts”. As the authors point out, the cognitive mechanisms assumed to
perform this extra-linguistic abstraction are hardly ever specified, but semantic
similarity of individual cognitive agents remains the privileged measure to assess
the contextual representations supposed to result from it.

As different as this more sophisticated variant may be in its attempt to at-
tribute explanatory power to the distributional hypothesis, it shares with the
other versions a congruent conception of what contexts are, namely the domain
or scope within which entities of the same nature can be presented together,
or in other terms, co-occur, in such a way that they can be associated by a
cognitive agent. Whether it is words within a specific linguistic scope, objects
or facts in a circumscribed situation or concepts within an restricted inferen-

43A solid defense of this position can be found in Glenberg and Mehta (2008).
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tial framework, contexts are seen both here and there as this bounded region
against the backdrop of which individual agents perform associative operations.
If linguistic contents are connected with the distributional properties of linguis-
tic units, then in one way or another, all those versions provide an image in
which the latter need to be somehow correlated with this associative faculty of
individual agents, and through it, with the restricted conditions of its exercise
that one may then call “contexts”.

4.2 From word co-occurrence to term-context
(bi-)duality

Yet, the elementary mechanisms of MMs we have examined in the previous
section have the potential to challenge key aspects of that common conception,
providing at the same time an alternative image of language, closer to the results
and perspectives the new NN models have been able to reveal in distributional
models. A first step toward the reconstruction of such an image is suggested
by the last example of the previous section, showing that, in principle, the
mechanisms of MMs can determine the similarity between terms that do not
share any explicit linguistic context. This implies that, as far as MMs are
concerned, similarity between words is not the direct result of their co-occurrence.

This point has been strongly raised by Landauer in the framework of a reflec-
tion on the theory of meaning conveyed by LSA. As Landauer says: “Whereas
LSA starts with a kind of co-occurrence, that of words with passages, the anal-
ysis produces a result in which the fact that two words appear in the same
passage is not what makes them similar” (Landauer et al., 2007, p. 16).44 Lan-
dauer refers to previous studies Landauer (2002) that show that the similarity
measure produced by LSA correlates only slightly better with the number of
times words co-occur in the same context as with the number of times they oc-
cur independently in other contexts. In Dennis et al. (2003), the authors report
that over 99% of the word-pairs for which LSA can establish a high similarity
never appear together in the same context. As an example of this fact, Lan-
dauer mentions the expression “A circle’s diameter”, to which LSA is capable
of attributing a cosine similarity of 0.55 with respect to “radius of the sphere”,
while an expression similar to the latter in terms of word co-occurrence such as
“music of the spheres” only measures 0.03 from the point of view of LSA.

As surprising as it may appear at first sight, the most unsophisticated con-
sideration of our use of language provides an intuitive interpretation of this
fact. If one takes, for instance, two similar words, such as “my” and “your”, or
“house” and “bungalow”, it is easy to see that there is no intrinsic reason for
them to appear in the same linguistic context. Rather the opposite is true: if
we consider the linguistic context “The day she came to your house in Paris”,
not only the word “my” is unlikely to appear in that particular context in which

44Incidentally, this entails a critique of a conception of language as a “bag of words”, which
is common in the field of NLP (including word2vec, the name of one of the models of which—
CBOW—makes explicit reference to it): “Some authors have also characterized LSA as a
“bag-of-words” technique. This is true in the narrow sense that the data it uses does not
include word order within passages. However, what the words are and what the model does
with the words is critically different from the keyword or “vector space models” of current
search engines with which the sobriquet of “bag-of-words method” is usually associated”
(Landauer et al., 2007, p. 21).
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“your” already appears, but even more, its occurrence has been actually pre-
cluded by that of “your”. It is precisely to mark the difference with “my” (but
also with “her”, “his”, “their”, etc.) that the word “your” has been used in
this particular context. And the same is true of “house” and “bungalow” (or
“apartment” or “bedroom” or any other “similar” word). It is an inherent prin-
ciple of the very meaning of a word, as well as a rule guiding its use, that its
occurrence in a context excludes the occurrence of all other structurally similar
words at that place.

On the other hand, words such as “my” and “house”, which do indeed fre-
quently co-occur,45 are far from being similar (cosine similarity = 0.04). It
follows that, rather than guaranteeing similarity, co-occurrence acts as a for-
mal differentiating or discriminating mechanism with respect to the contents
of words. As Landauer correctly points out, “two words that appeared in the
same sentence would not be very good evidence that they had the same mean-
ing because there would often be more expressive value in using two different
words” (Landauer et al., 2007, p. 16). The same point can be pushed further by
observing that, whenever two similar words appear side by side, the resulting
effect is that of a magnification of their differences and not of their similarities
(like in the sentence “She bought a house and a bungalow”). Consider the ex-
treme case of maximal similarity given by the relation of a word to itself, which
corresponds to a minimal probability of finding a word in its own context. The
rare cases in which we do find it, like in the expressions “to play a play”, “such
and such”, “blah blah blah”, or the French “vous vous trompez”, imply a repe-
tition of the word utterly unsettling for its identity as a fundamental linguistic
unit, since it induces a syntactic or semantic distinction that forces us to think
that behind identical occurrences lie two different meanings, if not two different
words altogether.46

It follows that the explanatory power of the distributional hypothesis with
respect to MMs, and through them possibly to NN word embedding models,
cannot rely on the correlation between similarity and direct co-occurrence. In
the regular use of language, similar words might tend to have similar meanings
when they occur in similar contexts, but not in the same context at the same
time. This basic observation concerning the elementary mechanisms of language
should suffice to rule out any customary version of the distributional hypothesis
willing to correlate in a simple way linguistic contexts with pragmatic or extra-
linguistic ones. What is more, this forces us to attribute a certain degree of
autonomy to specifically linguistic contexts in their contribution to linguistic
meaning.

However, if similarity is not about simple or direct co-occurrence, the above
examples suggest that similarity is nevertheless related to co-occurence in an in-
direct fashion, namely through shared co-occurrence. Indeed, if “my”, “your”,
“her”, “their”, etc. are in a way similar, the reason, from the point of view of
distributional models, is that they co-occur (or at least they can co-occur) with
the same words (“house” or “bungalow”, in our example). The notion of “second

45The word “my” appears in 8665 (∼ 0.027%) of the 316928 different ±2-word contexts
surrounding the word “house” within the Corpus of Contemporary American English, com-
pared, for instance, to only 3 of those contexts (∼ 0.0000095%) in which the word “bungalow”
appears.

46Some aspects of the phenomenon of linguistic reduplication have found an interesting
treatment in “The salad-salad paper” Ghomeshi et al. (2004).
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order co-occurrence” is sometimes used to characterize this mechanism behind
word similarity, a terminology first introduced by Schütze in Schütze (1998) to
underline the contrast with simple or “first order” co-occurrence. This refined
conception of word co-occurrence seems to be appropriate to support the claims
of distributionalism to ground semantic similarity through a cognitive interpre-
tation, provided that associative operations are superseded by more complex
processes, such as intricate cognitive abstractions like those referred by Miller
and Charles in the strong version of the distributional hypothesis.

Yet, even in this elaborated version, the notion of co-occurence fails to cap-
ture two essential properties of the elementary mechanism of MMs, namely: the
fundamental disparity between terms and contexts and the non-trivial organiza-
tion of contexts themselves.

As for the first of these points, the notion of co-occurrence suggests that,
within a given context, the entities that co-occur are of the same kind or
nature—in this case, words. Thus, in “my house”, “my” and “house” are
thought to be words co-occurring in the same context, which, together with
the co-occurence of “your” an “house” will determine the similarity of “my”
and “your”. Yet, while the homogeneity of the terms whose similarity is es-
tablished (“my” and “your”) is somewhat required by the model, that of the
terms and the contexts through which that similarity is established (“my” and
“house”, for instance) is not. Indeed, MMs assign distinct principles of repre-
sentation to terms and contexts, namely row and column vectors in a matrix,
and mobilize that distinction in their capacity of extracting similarity from dis-
tributional properties. The linguistic relevance of that dissymmetry between
terms and contexts is clearly shown by models based on word-by-document ma-
trices (such as LSA). By letting columns represent documents as contexts for
words represented in turn by rows, those models are able to establish important
semantic properties of both words and documents. Now, words and documents
are not, in principle, entities of the same kind: documents are supposed to be
constituted of words, but not the other way round. As such, they cannot enter
into a relation of co-occurrence, for words do not co-occur with but within doc-
uments. In spite of this dissymmetry, and maybe even because of to it, MMs
have no difficulty in representing their relationship and putting it to work for
the reconstruction of meaningful aspects of language.

Of course, columns can also be made to represent words, as shown by models
based on word-by-word matrices. It was Sahlgren Sahlgren (2006, 2008) who
most convincingly argued for the difference in kind between these models and
those relying on word-by-document matrices.47 Whereas in the latter, contexts
are both topical units and unities, which are directly represented by the columns
of the matrix, the contextual units word-by-word matrices directly represent are
instead the words themselves that can be encountered in linguistic contexts. The
notion of context has in this last case a different sense: it refers to an implicit
sliding window over a corpus rather than an explicit text region endowed with
topical unit-unity.

In the light of this difference, one can be tempted to admit that the dis-
parity between terms and contexts as two sides of the matrix is not intrinsic
to MMs, but is only an effect of the type of contexts one chooses to repre-

47Understanding by “documents” regions of text of any possible length—from extended
regions down to sentences and even below.
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sent. However, Sahlgren’s clear-cut distinction needs to be relativized. Indeed,
Sahlgren associates that distinction with a more fundamental one, borrowed
from the Saussurean conceptual framework, namely that of syntagmatic and
paradigmatic relations between linguistic units. Syntagmatic relations concern
the sequential combination of units in given linguistic contexts (such as the
relation between “my” and “home” in our example), while paradigmatic rela-
tions hold between units that can be substituted in such contexts (like “my”
and “your”). With this distinction in mind, Sahlgren identifies word-document
models with models establishing syntagmatic relations between terms and word-
word models with those producing paradigmatic ones. Now, as we have seen,
word-document models are capable of producing similarities between terms that
do not share any context, and hence do not stand in syntagmatic relations. On
the other hand, unless the size of the sliding context window is reduced to one,
word-word models are always susceptible of collecting syntagmatic information
which will then contribute to establishing the similarity of terms. Think about
collocations, i.e. words that co-occur very frequently, such as “San Francisco”.
For a 5+5-sized window in a word-word model, the words “San” and “Fran-
cisco” will share 8 out of 10 context words for each one of their co-occurrences,
which means the model will establish a high similarity between them, even if
collocations such as this are the “prime example” (Sahlgren, 2008, p. 40) of
syntagmatic relations between words. One could of course decide by alternative
means that “San Francisco” is one word and not two.48 But other cases, such
as “of the”, “to be” or “it was” cannot afford that simple solution. Of course, in
those cases, the isolated occurrences in other contexts of each of the co-occurring
words will contribute to discriminating them, compensating and even overturn-
ing the similarity effect. Moreover, as Sahlgren appropriately reminds, most
terms never co-occur. Yet the point here is that neither word-document models
prevent non-syntagmatic similarity nor word-word models exclude syntagmatic
ones.49

We will have the opportunity to come back to the connection between MMs
and the Saussurean distinction between syntagmatic and paradigmatic relations,
which we believe needs to be placed at a different level than the one suggested
by Sahlgren. What is important for now is that rather than supporting the
idea of a difference in kind between document and word models, Sahlgren’s use
of the syntagmatic-paradigmatic distinction seems to advocate for a difference
in degree between those models: word-document models tend to capture syn-
tagmatic relations while word-word models tend to capture paradigmatic ones.
The difference in degree can, in this last case, be easily grasped: in general, for
a n+m-sized window, co-occurrent words will share n+m− 2 context words,
which implies that the larger the context window, the more syntagmatically mo-
tivated can the resulting similarity be. Indeed, Sahlgren admits that “a narrow
context window is preferable to use for acquiring paradigmatic information.”
(Sahlgren, 2008, p. 46). Interestingly, the narrower the context window, the
more the represented words behave like documents, that is, as units and (aggre-
gated) unities (since explicit context words tend to coincide with the implicit

48Which already raises the issue of the identity of words as fundamental units of language.
49One could also add that hybrid models are conceivable, in which some columns represent

words while others documents, which would result in an increase of precision in the analysis
of similarity, without any loss of information. This would be unlikely if both models were
different in kind.
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sliding context window).

Even if the syntagmatic-paradigmatic distinction does not justify an intrin-
sic clear-cut separation between word-document and word-word models, it could
still be claimed that in word-by-word matrices the terms and contexts respec-
tively represented by the rows and columns of the matrix are entities of the
same kind. After all, if context windows are symmetric, so will the resulting
frequency matrix be, and its rows and columns could be treated as one and
the same thing. Yet symmetric matrices are only a particular form of matrix,
induced by the choice of a specific form of context window. Nothing in the mech-
anisms of MMs (nor in those of language itself) forces us to make that choice.
For any other form of sliding window, the resulting matrix will yield different
row and column vector representations corresponding to what are supposed to
be the same word, splitting, as it were, the representation of the latter into two
non reducible dimensions. Such matrices will not fail to capture meaningful fea-
tures of language nonetheless. On the contrary, important aspects of linguistic
content, owing for instance to syntactic properties, will thereby became accessi-
ble which were otherwise out of reach.50 In the case of directional matrices, for
example, i.e. matrices collecting either right or left contexts of terms, those two
disparate representations will correspond to different combinatorial capacities
of linguistic units, with which semantic features can be associated, like being
the subject or the object of an action, as in “the man hit the dog” or “the
dog hit the man”. One could still argue that in both sentences, the meaning
of the word “man” is the same. But this is less clear as soon as we force both
representations to actually relate to each other, as in “the man hits the man”.

By producing different representations for terms and contexts, the effective-
ness of the mechanisms of MMs forces us to consider that words are complex
units determined at the crossroads of two irreducible dimensions: words as ac-
tual terms and words as contexts. Those two dimensions do not necessarily
coincide, except under very specific conditions which are foreign to the model
itself, and which have the effect of restricting the capacity of the model to reveal
multiple aspects of linguistic meaning. An analogy with the roots of a quadratic
equation might help to understand the coincidence between those two dimen-
sions (i.e. the equality of the corresponding rows and columns in symmetric
matrices): just because under very specific conditions both roots can have the
same value does not mean that the equation has only one root. This analogy
has nevertheless its limitations, since roots can indeed be thought as being of
the same kind. However, there is no reason to resort to any analogy here, since
the very form upon which MMs rely provide everything we need. Indeed, the
representation of terms and contexts in a matrix literally induces between them
a relation as the one between row and column vectors. Far from being trivial, all
the benefit of the application of the power of linear algebra to linguistic analysis
in MMs hinges upon this circumstance. Now, this suggests that the disparity
that at the same time distinguishes and connects rows and columns in a matrix
is being projected upon linguistic units. As it is known, in spite of both being
represented as vectors, rows and columns are related as the elements of a vector
space to those of its dual space. This is why the latter are usually referred
to as “covectors” instead. This is not just a terminological issue, vectors and

50It might be relevant to remind here that both models applying SVD as well as word2vec
and other related NN models produce different representations for terms and contexts.
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covectors differ in kind: while the first ones constitute elements of some space,
the second ones represent (linear) functions over those elements.

We can then rely in those formal properties of MMs to characterize the ontol-
ogy such models induce on linguistic units. In particular, the argument-function
distinction seems to accurately characterize the disparity between terms and
contexts: linguistic contexts can be understood as functional expressions rang-
ing over linguistic terms. In an expression such as “my house”, “my” as a term
is seen as a possible argument for the functional or unsaturated51 expression
“( ) house”. And certainly, matrices can be read from both sides, so that, for
instance “my house” can be decomposed into “my ( )” and “house” as well.
The disparity between (words as) terms and (words as) contexts is not erased
because of that.

All the contexts we have encountered can be formally represented by such
functional expressions, even if that representation requires the recourse to com-
plex structures.52 This leads us to the second essential property of the elemen-
tary mechanisms of MMs that the notion of co-occurrence tends to disregard:
the non-trivial organization of contexts themselves. By focusing on terms and
on the establishment of their similarity, the idea of (shared) co-occurrence usu-
ally neglects the difficulty involved in determining when two context can be
considered as being the same.

The trivial answer pointing to documents and words hides the complexity
of their functional structure, and the non-triviality of the problem of the equiv-
alence of functional expressions. Yet the question of contexts in the framework
of MMs is non-trivial also in a more apparent way. If we recall the fact that
MMs can establish the similarity of terms that do not co-occur in any explicit
context, then we can understand that, even if the identity of explicit contexts
is settled, the structure of contexts which is relevant to the similarity of terms
is not given because of that, since it requires an analysis of the global distribu-
tion of contexts themselves. This problem lies behind the idea that semantic
similarity is not about occurring in the same contexts, but in similar ones. An
immediate consequence of this fact is then that a procedure equivalent to the
one applied on terms has to be performed at the level of contexts for the former
to take place. Interestingly, this is not possible without having first determined
the similarity of terms that was expected as the result of the whole process.53

Of course, the relation between terms and context appears from this per-
spective to be circular. Yet, this is not a defect of the model but a property
of language itself, revealed by the ontology the former projects on the latter.
Indeed, from a strictly linguistic point of view, one could say that an adjective
is in part defined by its relation to a noun, which is in turn defined in part by its
capacity of being affected by adjectives. By neglecting the difference in kind be-
tween terms and contexts, and trivializing the organization of contextual units,
the notion of co-occurrence evades this difficulty, at the expense of disregarding

51To use a classical Fregean way of referring to functional expressions. Cf. Frege (1984).
52Landauer’s conception of a passage as a linear equation (Landauer et al., 2007, p. 13)

and Sahlgren’s idea of null-weights for positions in context windows (Sahlgren, 2008, p. 45)
provide a hint on how such representations could be constructed in the case of document and
word contexts.

53Terms do not have any priority over contexts in this back and forth, since, as we have
seen, if terms are arguments for functional contexts, the inverse can also be true, by simple
transposition of the matrix. Terms and contexts differ only formally, the only important thing
is that one is seen as saturated and the other as unsaturated.
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important dimensions of linguistic content. However, if distributionalism is to
be understood as the correspondence between similarity of terms and similarity
of contexts, no version of co-occurrence seems to be the right way to understand
the ontology that underlies it. Indeed, to occur in similar contexts can imply
not to co-occur at all.

Through the lens of MMs, distributionalism is then less about co-occurrence
of words in context, than about simultaneous and articulated discrimination
between terms and contexts: “my” and “house” are not words co-occurring in
the same contexts, but “house” is the context of the actual term “my”, while
“my” is the context of the actual term “house”. A subtle originality of MMs,
and a fundamental source of their strength, consists precisely in their capacity of
assigning different yet interrelated representations for those two heterogeneous
dimensions of the same linguistic units, and putting it at work for the derivation
of linguistic content.

The example by which we illustrated the similarity between non-co-occurring
words can provide here an alternative figure, closer to the essence of distribution-
alism than that of co-occurrence. That example suggested that the similarity
between “she” and “we” could be established by “she” appearing in the context
of “says” and “we” in that of “say” (p. 23). Similarity relies then on the equiva-
lence of relation between pairs of linguistic units, or in other terms, on analogy :
if “she” can be said to be similar to “we”, it is because “she” is to “says” as
“we” is to “say”. Shared co-occurrence could be seen as a restricted version
of analogy (“my” is to “house” as “your” is to “house”). While the latter can
contribute to semantic similarity, only the general form of analogy is capable of
grasping the structural contents of that similarity, like the ones word2vec and
alike NN models were able to exhibit.

We will see that the same notion of analogy was central in Saussure’s struc-
turalism, and in his view of the relation the speakers of a language maintain
with that language. However, the analysis of the mechanisms of MMs provide
the means of characterizing the articulated opposition between terms and con-
texts in a more formal way. We can draw on the formal relation between the
spaces defined respectively by row and column vectors to understand such a
relation as a genuine duality : contexts are the duals of terms as much as terms
are the duals of contexts. Borrowing from a suggestive use of a related notion of
duality in contemporary logic (cf. Krivine (2001); Girard (2001)), we can then
say that “house” is a (right) dual of “my” as well as “my” is a (left) dual of
“house”, as well as a document is a dual of all the terms it contains and vice
versa. Thus understood, duality is neither reducible to co-occurrence nor is it
the direct source of similarity (dual words, like “my” and “house”, are not sim-
ilar). And yet, it is through duality that word similarity is attained in the end:
if “my” and “your” are similar, it is because, among others, they are both duals
of “house” no less than of “bungalow” (whose similarity is in turn determined in
part by the fact of being duals of both “my” and “your”). It follows that content
similarity between terms is not about co-occurrence, but about bi-duality, i.e.
about the relation of duality a term maintains with the dual contexts of another
term (a term is similar to another if it is a dual of the latter’s duals). Such a
mechanism can be pushed further by considering the duality between a term
and the type of its dual contexts established by bi-duality. Thus, if “says” and
“say” are shown to be bi-dual (for instance, with respect to “this” and “that”
as (right) dual terms), then the duality of “she” with respect to this bi-dual
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type of its dual context “says” permits to establish a bi-dual relation between
“she” and “we”.54

4.3 From use to strategy: Contexts as formal dimensions
of language

The combined action of the duality between actual terms and their correspond-
ing contexts, and the bi-duality by which the similarity and dissimilarity of
terms can be determined, and vice versa—to which we will henceforth refer as
(bi-)duality—constitutes a fundamental component of the image of language
engraved on the intimate mechanisms of MMs.55 However, unlike cognitive at-
tempts to ground the effectiveness of distributionalism upon linguistic meaning,
the notion of context stemming from that image is a strictly formal one, refer-
ring to an internal dimension of the organization of language itself, rather than
to cognitive capacities of individuals. Contexts are just the result of a formal
distinction at the level of linguistic units, which is the condition for determining
their content. Indeed, the procedures that lead to the analysis of word mean-
ings in terms of vector representations require that we consider the contexts of
actual terms; but such contexts are made of nothing more than other terms,
whose meaning is determined by inspecting their own contexts in turn, which
might happen to be composed of the initial terms. Hence, through the lens of
our models, each word, insofar as it has a meaning, is both an actual term and a
component of contexts for other terms. Its identity is split, as it were, by those
two incompatible aspects (since the same word cannot be a term and a context
at the same time) at the intersection of which its meaning can be established.

Landauer provides the means to understand the purely formal character of
the relation between terms and contexts when he attaches the latter to a sys-
tem of simultaneous equations such as A + 2B = 8 and A + B = 5, in which
“neither equation alone tells the value of either A or B, but the two together
tells both.” (Landauer et al., 2007, p. 13). The meanings of contexts are then
like equations between terms, as much as the meanings of terms are equations
between contexts, neither of which can be determined other than by simultane-
ously considering their respective entire systems. We must be careful not to take
Landauer’s image as a mere metaphor, since it finds its strict realization in the
system of equations defined by the term-context matrix, where the duality be-
tween terms and contexts corresponds to the duality between the spaces defined
by row and column vectors. What is more important to us here is that such an
image of formal contexts arising from MMs deeply contrasts with that of con-

54This understanding of articulated opposition and structural similarity in terms of du-
ality and bi-duality, as well as its possible connection to the conditions for typing logical
terms through bi-orthogonality relations owes everything to a joint work in progress with Luc
Pellissier.

55If attention is paid to the technical details of word2vec models, it appears that such
duality is pervasive: not only the duality between central words and context words motivates
the introduction of two different models (CBOW and Skip-gram, the former producing vector
representations of context words out of central words, and vice versa), but for each of those
models, two different sets of vector representations are produced corresponding to words taken
as central or as context words, and the combination of those two representations for the same
word has not received a satisfactory conceptual solution (in the original word2vec model,
representations of output vectors are simply discarded; in other models, both vectors are
added). For a careful assessment of the technical implications attached to the possible ways
of associating both sets of vectors, see (Levy et al., 2015, §3.3).
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texts as concrete cognitive situations suggested by the customary associations
of the distributional hypothesis with a use theory of meaning. Indeed, noth-
ing of a concrete extra linguistic situation nor of empirical cognitive operations
seems to find its clear correspondence in the formal organization of contexts
within the language, other than indirectly through word distributions in the
corpus. To affirm that linguistic contexts are a faithful proxy for pragmatic
contexts seems to constitutes therefore an ungrounded claim, which does not
do justice to the image of language that arises from the computational models
under consideration.

Such a formal image of contexts is the key to address the question of the
place of an individual cognitive agent as a necessary intermediary between dis-
tribution and content. Landauer, for instance, advances the idea that meaning
is the effect of “autonomous manipulations of strings of words that convey ab-
stract combinations of ideas such as imaginary numbers” (Landauer et al., 2007,
p. 7). Of course, Landauer recognizes that, for language to be useful, a certain
“mapping” has to exist between some of the those words and perceptual experi-
ence. “However”, he adds, “once the mappings have been obtained through the
cultural evolution of a language, there is no necessity that most of the knowl-
edge of meaning cannot be learned from exposure to language itself” (Landauer
et al., 2007, p. 7). The capacity of vector representations to capture multiple
aspects of linguistic meaning based only on unsupervised analysis of corpora
provides, for him, good evidence of that fact.

Yet if contexts are only a formal dimension of language rather than extra-
linguistic concrete situations, and important aspects of meaning are still de-
ducible without the need of any other source, then meaning must be to a large
extent independent from the empirical situations of individual cognitive agents.
The only empirical source of meaning is language itself, as a series of “au-
tonomous manipulations of strings of words”. Rather than to the instrumental
practice of a cognitive subject, linguistic meaning should be attributed to a
large extent to the structure of language itself. This does not mean that sub-
jective dimensions are absent from meaningful linguistic phenomena, but that
subjectivity has more to do with the effects of those mechanisms than with their
causes. In Landauer’s terms: “It is [. . . ] almost entirely the relations that are
represented and activated by words and collections of words that create verbal
meaning. And it is primarily these abstract relations that make thinking, rea-
soning, and interpersonal communication possible”; and shortly after: “Memory
and language are not physical objects, they are properties of an information-
processing system” (Landauer et al., 2007, p. 8). Yet nowhere is he as explicit
in this respect as in the following passage:

LSA axes are not derived from human verbal descriptions; they are
underlying points in a coordinate system, in LSA’s case, one that
relates meanings to each other. LSA’s theory of meaning is that the
underlying map is the primitive substrate that gives words meaning,
not vice versa. (Landauer et al., 2007, p. 8)

Although Landauer is referring here only to LSA models, our previous anal-
yses suggest that these remarks can be extended to all MMs. This could answer
why new NN models are capable of reconstructing the underlying organization
of language based on an almost raw linguistic corpus without the need of any
other human intervention. Such a perspective suggests that linguistic meaning
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is not immediately about cognitive use in pragmatic context, but about duality
relations between terms and contexts as a formal distinction within language
itself. Use is, however, not entirely absent from that image. If contexts are
the formal duals of terms, the ordinary use of language consists in submitting
oneself to the formal constraints of matching the right terms with the right
contexts. Each time a word is “used” as an actual term, a fairly precise series
of dual contexts are selected within the structured space of language, virtually
determining the meaning of such term. To speak (or to write) is to choose
among those highly restricted and organized possible contexts the next actual
term, which will in turn act backwards on the previous term now turned into
a context of the present one, and opening forward a new structured series of
possible contexts that will keep the ball moving. If, as formal dimensions of
words, term and context are like the two faces of the same coin, meaningful use
of words is like flipping coins on their side and back, one at the time.

Such a conception of use is not entirely foreign to Wittgenstein’s own pro-
found views, which are not reducible to a strictly cognitive interpretation. Lan-
dauer does not miss out on referring to his work in this respect. However,
rather than Wittgenstein’s notion of “use”, this unusual image of language is
best captured by his conception of language as a “game”. Language is less like a
hammer, that could be used by different subjects in different situations in differ-
ent ways, than like chess or Go (or flipping coins, for that matter), where strict
rules, and not subjective decisions, govern the conditions under which certain
practices are to be considered meaningful practices of that game. Unlike tools,
games do not give the subject the freedom of use, but the organized space of a
strategy.56

All this shows us a picture of language radically different from the one ordi-
narily associated with the distributional hypothesis as it is commonly adopted
in the recent literature around word embeddings. Rather than words similarly
used by natural language speakers in similar concrete situations, we are con-
fronted with an image of language in which both the identity and the meaning
of words are the result of a fundamental duality between two internal dimensions
of an abstract and highly autonomous system of simultaneous co-determination,
defining a space of formal structured constraints conditioning subjective lin-
guistic practices. Form rather than substance, game rather than tool, strategy
rather than use.

4.4 The limits of semantics

Drawing this image of language as close as possible to the capacities of the
intrinsic mechanisms of MMs suggested by new NN word embeddings is not
just a speculative exercise. Among others, that image can suggest new ways
in which the use of classic MMs methods could be broaden in order to extend
their capacity of accounting for linguistic phenomena.57 For, as we have sug-
gested, the large spectrum of possibilities those mechanisms offer, in particular

56Of course, linguistic constraints are not as minimal, rigid and explicit as those of chess or
Go, and leave the room for strategies to be at the origin of new rules. This is how a deeper
notion of use can find its place in the new landscape. Such creations are, however, rare at a
large scale and constantly guided by existing regularities at each state of the language.

57This is, for instance, what Levy et al. Levy et al. (2015) carry out in a way, although
they only focus on the technical details, without assessing the conceptual aspects concerning
language itself.
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concerning the complex organization of contexts, but also of their implicit re-
lation with terms, can contribute in unexpected ways to revealing significant
aspects of language. It is not implausible that NN models are taking advantage
of that full spectrum to obtain their surprising results. What can then be the
reason for the frequent restriction of MMs to the principles dictated by a small
number of models, and by those based upon symmetric word-by-word matrices
in particular?

Part of the answer for this limitation must be sought in the overwhelming
semantic orientation of distributional approaches of the last decades. Indeed, as
already mentioned, MMs emerged and evolved in the context of mainly semantic
tasks, such as information retrieval and word similarity.58 This almost exclusive
semantic understanding of distributionalism keeps it tied to an image in which
the source of meaning is to be sought either in objective “states of affairs”
or in subjective or intentional cognitive operations. Indeed, be it empirically
or theoretically, word similarity by individual agents remains the judge in last
ressource of the pertinence of contextual representations, whether it is conceived
to find its source in pragmatic or extra-linguistic situations, as in the customary
or the weak version of the distributional hypothesis, or in the subjective faculty
of abstraction as in Miller’s view.

Such a circumstance entails a series of epistemological obstacles prevent-
ing from exploiting the manifold possibilities offered by MMs, starting with the
almost complete exclusion of syntax from the original interests of MMs.59 More-
over, owing to that semantic orientation, distributional models have extensively
granted a privilege to words as fundamental units of linguistic analysis. Finally,
and connected to those two aspects, the meaning extracted from the distribu-
tional properties of language has been above all conceived as organized in terms
of mere similarities, thus neglecting the possible underlying structures and the
mechanisms by which they can contribute to the emergence and reconstruction
of linguistic meaning.

If we concentrate on the first of those obstacles, it is easy to see that this
a point in which the task-independent NN models of word embedding show all
their conceptual originality. As we have seen, in this case the underlying orga-
nization of the embedding space is not only semantic (capital cities, company
CEOs, traditional dishes, etc.) but also syntactic (adverbial forms of adjectives,
comparatives, superlatives, gerunds, verb tenses, plurals, etc.). What is more,
both semantic and syntactic structures emerge from one and the same analytic
procedure. Although barely acknowledged as such, this is a remarkable fact if we

58This circumstance motivates the frequent conflation between MMs and DSMs (Distribu-
tional Semantic Models). See, for instance, Baroni and Lenci (2010).

59In the particular case of LSA, for instance, although implied in the idea of manipulations
of strings of words and abstract mutual constraints between terms and contexts, syntactic
properties are entirely disregarded as dimensions of language worth capturing by the model.
In fact, syntax is discarded twice in the original formulation of LSA: first, because the model
is not supposed to capture syntactic features, but only semantic content; second, because
syntactic contribution to semantic content is neglected by design, namely by neglecting word
order. Certainly, those two exclusions are not oversights and find valid grounds and explicit
explanations: the first one in the fact that LSA was conceived above all as a system of
information retrieval (and not as a general language model), the second in the fact that, from
the specific perspective of information retrieval, syntactic structure (as given by word order)
conveys negligible information. Landauer and his team provide fairly convincing arguments
that estimate the contribution of word order to the meaning LSA is supposed to capture at
around 10%-15% (Landauer et al., 2007, pp. 25–29).
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recall that, since its introduction, the distinction between syntax and semantics
as two independent dimensions has extensively oriented the study of language
both within and outside the field of linguistics.

To better grasp the significance of this fact, the notion of syntax requires
some clarification. While semantics generally refers to the meaning of words
as given by (the features of) the objects and ideas those words refer to, the
notion of syntax is more ambiguous. In the framework of the evaluation of NN
models of word embeddings we have seen in previous sections (and of analogies
in particular), syntax is implicitly associated with grammatical principles which
can govern the combination of words into supra-lexical constructions. Yet, in
this restricted sense, which follows the standard use of the term in linguistics,
syntax is generally considered in contrast, not to semantics, but to morphology,
that is, the form of words as given by the arrangement of sub-lexical units.
When opposed to semantics, the notion of syntax tends however to assume a
broader scope, namely the manipulation of linguistic units of any level (from
sub-lexical to supra-lexical) independently of the meaning of both units and
manipulations. In this wider sense, which encompasses the restricted one, the
scope of syntax tends to cover also those of phonology and morphology insofar
as all those fields are considered in complete independence from the possible
meaning of their objects. This notion of syntax as opposed to semantics, which
is close to the general idea of a formal grammar, can certainly be traced back to
the works of Carnap Carnap (2001)and Morris Morris (1938), becoming since
one of the cornerstones of the philosophy of language.60

In this broad sense, the distinction between syntax and semantics is consid-
ered an important evolution in our understanding of linguistic phenomena, and
confusions between both dimensions are identified as possible sources of help-
less paradoxes.61 Now, against this firmly established view, the syntax-semantic
distinction does not play any role whatsoever in NN word embedding models
such as word2vec: the model produces word vector representations bearing both
syntactic and semantic content without ever orienting the training procedure in
one sense or another. It is true that the window size and the symmetry or
asymmetry of the contexts have been shown to correlate with higher perfor-
mances on syntactic or semantic tasks (small and asymmetric context windows
performing better on syntactic tasks, while large and symmetric improving se-

60Carnap’s broadening of the notion of syntax was originally intended to provide a syntactic
and linguistic conception of logic: “logic will become a part of syntax, provided that the latter
is conceived in a sufficiently wide sense and formulated with exactitude” (Carnap, 2001, pp.
2). He thus introduced the notion of “logical syntax” of a language to refer to “the formal
theory of the linguistic forms of that language—the systematic statement of the formal rules
which govern it together with the development of the consequences which follow from these
rules”. And he defined “formal” in the following terms: “A theory, a rule, a definition, or the
like is to be called formal when no reference is made in it either to the meaning of the symbols
(for example, the words) or to the sense of the expressions (e.g. the sentences), but simply
and solely to the kinds and order of the symbols from which the expressions are constructed.”
(Carnap, 2001, pp. 1). Morris, in turn, defined “syntactics” as the “the study of syntactical
relations of signs to one another in abstraction from the relations of signs to objects or to
interpreters” (Morris, 1938, p. 13), while semantics “deals with the designation of signs to
their designata” (Morris, 1938, p. 21).

61Certainly, from the viewpoint of the study of natural languages, multiple relations between
both dimensions have been proposed, and what is known as “syntax-semantics interface”
remains an active domain in the field (see Rappaport Hovav and Levin (2015) for an overview).
Yet rather than eroding the frontier between both dimensions of language, those approaches
presuppose it and intend to specify it.
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mantic ones (Pennington et al., 2014, §4.4)). However, rather than proving a
clear-cut distinction, such behavior argues in favor of a continuity between syn-
tax and semantics. The fact remains that recent NN model of word embeddings
are able to reach high performance in both tasks following one and the same
training procedure, and the vector representations resulting from those models
inherit that lack of distinction. Indeed, it is the same vector representing the
word “house” that bears with “houses” the same relation that “foot” maintains
with “feet”, with “housed” the same relation as “catch” with “caught”, with
“farmhouse” the same as “city” with “countryside”. Only the directions of the
offset in the embedding space distinguish those relations, for which there is no
a priori classification. If syntactic and semantic tasks are distinguished, such
distinction is only external and entirely arbitrary, in principle, from the point of
view of the vector representations themselves. It appears that against one of the
best-established features of the classical image of language, word embeddings
install a continuum between syntax and semantics that blurs any categorical
attempt to make of that distinction a precondition of linguistic phenomena and
of their scientific study and raises serious objections to the exclusion of syntactic
properties for the establishment of linguistic meaning.

However, in spite of the better conceptual insight offered by word embeddings
in this respect, that outcome is not restricted to NN models. Its underlying
mechanisms bear practically no difference with those of MMs. This leads us
to the second of the epistemological obstacles mentioned before. Since, after
all, the exclusive semantic orientation of word-document and word-word MMs,
as well as their usual inadequacy to grasp syntactic features, are the result
of an arbitrary choice concerning the restriction of terms and contexts to the
sole form of words (and even in most cases to non-syntactic words, such as
nouns) and of passages or even documents as combinations of words, that is,
strictly semantic units. Yet nothing in the principles of MMs and (bi)-duality
relations prevents from defining terms and contexts otherwise, along the line
of the syntactic-semantic continuum, so as to capture more syntactic content.
It is then not difficult to see that, for instance, contexts such as “those” and
“all the” would be the duals of “houses” and “feet”, but not of “house” and
“foot”, and the reconstruction of the corresponding underlying structure should
in principle be able to capture that and other syntactic analogies exhibited by
word embeddings.

It follows that modifications of the boundaries defining which units are to
be taken as terms and which as contexts give us the possibility of navigating
indistinctly between semantic and syntactic features within the same linguistic
space. As a consequence, it appears that under a general conception of syntax
the lexical level does not hold any a priori privilege. Significantly, the principle
of (bi)-duality between terms and contexts can hold at all the levels of articu-
lation of language. Take for instance the sub-lexical units “er” and “est” as the
(right) duals for both terms “big” and “larg”; or the units “ing” and “ed” as
duals of “play” and “lov”. An analysis of the implicit space of dependencies in
this case will capture the system of the corresponding constraints in the exact
same way as for words in documents or window contexts. Only in this case we
would be extracting latent morphological dimensions of the same space, which,
incidentally, are intimately related to other syntactic features at a lexical (and
supra-lexical) level, no less than to semantic aspects of the resulting expressions
(the first group of dualities expressing the comparative, the second the verb
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tense, although there is as yet no guarantee that a global analysis can extract
those exact features as independent dimensions,62 which is a matter of empirical
research).

Yet, one could wonder why to stop there and not continue down to the
character level? We will then easily see that “a”, “e”, “i”, “o”, “u” appear in
contexts such as “s”, “t”, “r”, “n”, “d”, “l”, “c”, “m”, etc., more frequently
than in any other, and vice versa. Certainly, the terms involved at this level
can hardly be considered as words: their semantics is hopelessly absent. Yet
the content of those corresponding groups of bi-dual terms is no less clear:
they correspond to the phonological categories of vowels and consonants, as
a meaningful phonological distinction of the English language. A meaningful
distinction whose underlying mechanisms, as far as our computational mod-
els are concerned, bear no substantial difference with the distinction between
words such as “house” and “bungalow”. Incidentally, the fact that each of the
units of this level is devoid of semantic reference does not prevent those units
from bearing decisive semantic effects: think a about the possible substitution,
within higher-level units, of character units belonging to the same category, as
in “bleed” and “plead” (we will return to this question in section 5.2).

Instead of invalidating the possibility of modifying at will the limits of terms
and contexts, the absence of lexical units below a certain level of analysis ar-
gues against the privilege traditionally granted to words as fundamental units
of analysis. Such privilege is strongly rooted in an old conception of language
and associated, more recently, with the semantic orientation that prevails in
the field of NLP.63 However, as we have shown, it is inscribed neither in the
mechanisms governing the models we have been studying, nor in their results. If
all the kinds of contexts we referred to could be taken into account at once, the
result could in principle embrace the series of all the relations we encountered
at different levels of analysis—syntactic (in the narrow sense), morphological,
phonological—as part of a unified structured space in which determination of
those possible levels would intertwine. Not that those levels would be indis-
tinguishable, but relevant distinctions would respond to internal criteria of the
embedding space itself, not necessarily matching the ones we are used to intro-
duce in the study of language from without. The remarkable results exhibited
in recent years by a new generation of NN NLP models, such as FastText Bo-
janowski et al. (2016), BPE Sennrich et al. (2016), ELMo Peters et al. (2018),
BERT Devlin et al. (2018), GPT Radford (2018), or XLNet Yang et al. (2019),
in which standard NN word embeddings are complemented with or replaced by
character-based and contextual embeddings—i.e., with possible units at the sub-
lexical and supra-lexical levels—in multiple ways, seem to provide an indirect
confirmation of this point of view.64

It goes without saying that, in spite of their promising results, NN word em-
bedding models are far from attaining such degree of syntactic or grammatical
reconstruction. In particular, when we consider units of higher levels, syntactic

62Consider for instance the fact that “er” will probably be an observed right context for
“play” and “lov” as well, although for different reasons, involving here also the relations
between syntactic and semantic features.

63For a critical perspective avoiding the privilege of the lexical level in the philosophy of
language and the field of NLP, see Rastier et al. (2001); Rastier (2001).

64The study of these more recent models, which have redefined the current state of the art,
could therefore significantly contribute to the questions raised in these pages. Unfortunately,
such an inquiry falls outside the scope of the present paper.



Juan Luis Gastaldi 41

regularities tend to depend increasingly on implicit classes or categories of terms
rather than on explicit individual terms and it is not entirely clear how existing
models could overcome this difficulty in their present state. And yet, this is
what the results they exhibit seem to accomplish up to a certain extent, deter-
mined by the limited syntactic resources they operate on (such as the lexical
lower bound for their minimal units). Provided that syntactic categories can be
distributionally defined, a progressive and stratified derivation of them could in
principle handle important aspects of this problem, although this is of course a
mainly empirical question.

We thus arrive to the last of the obstacles identified: the neglected possibil-
ity of reconstructing linguistic structures and establishing their connection to
the mechanisms of linguistic meaning. We find no better way to address this
problem than exploring the structuralist image of language that lies behind the
one we have drawn from our treatment of MMs and word embeddings.

5 The structuralist soil

5.1 Harris’s original distributionalism

As unsettling as it may seem, the image of language that arises from word em-
beddings and best matches its simple mechanisms and its surprising capabilities
corresponds quite faithfully to the stakes of Harris’s original distributionalism.
As we have already mentioned, practically no scholar in the recent state of the
field of NLP has failed to quote at some point Harris’s 1954 article “Distribu-
tional Structure” Harris (1970) to justify the conceptual basis of their endeavors.
And yet, given the strong semantic orientation of the field, one can be surprised
that almost none of those references has dwelled upon an elementary aspect of
his theory, mentioned since the very first lines of those pages, namely that in
Harris’s view the distributional character of language is perfectly independent
from meaning.65 Certainly, in section 2 of the paper, entitled “Distribution
and meaning”, Harris explores several ways in which distributional structure
of language might indirectly relate to meaning as a “general characteristic of
human activity” (Harris, 1970, p. 780), going as far as to maintain that “[i]n
certain important cases it will even prove possible to state certain aspects of
meaning as functions of measurable distributional relations.” (Harris, 1970, p.
785). However, if attention is paid to the general intention of all those pages as
well as to the overall purpose of his entire work, it is easy to see that those are
only concessions with respect to the main idea that language is an autonomous
system. To such an extent that to the question “Is there a Parallel ‘Meaning
Structure’?”, the answer is clear: “the structure of language does not necessar-
ily conform to the structure of subjective experience, of the subjective world of
meanings.” (Harris, 1970, p. 780).

The original distributionalism set out by Harris confirms in this way that
distributionalism cannot be interpreted in terms of a use theory of meaning, if
by “use” one understands the act of ordinary subjects freely using words as a

65In the first paragraph, Harris affirms: “Here we will discuss how each language can be
described in terms of a distributional structure, i.e. in terms of the occurrence of parts
(ultimately sounds) relative to other parts, and how this description is complete without
intrusion of other features such as history or meaning” (Harris, 1970, p. 775).
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vehicle of meaning in different situations. Harris could not be more explicit on
this point:

The perennial man in the street believes that when he speaks he
freely puts together whatever elements have the meanings he in-
tends; but he does so only by choosing members of those classes that
regularly occur together, and in the order in which these classes oc-
cur. [. . . ] the restricted distribution of classes persists for all their
occurrences; the restrictions are not disregarded arbitrarily, e.g. for
semantic needs. (Harris, 1970, pp. 775-776)

Like Landauer’s reconstruction, Harris’s distributionalism conveys an im-
age of language as an autonomous system of regularities and constraints, not
governed by any external source of meaning. However, while the former was
the result of an attempt to draw the image that best fitted the inner mecha-
nisms of MMs, Harris’s conception is rooted in a different ground. In line with
Bloomfield’s seminal work in linguistics, Harris’s aim has above all an episte-
mological motivation, namely to constitute language as an independent object
of scientific inquiry. To that end, assuming that meaning cannot be altogether
detached from linguistic phenomena, its explanatory role needs at least to be
put on hold, or else linguistics will end up being subjected to extraneous fields
of knowledge, such as psychology, history, sociology or logic. If the study of
language ought to acquire a scientific status, it is of vital importance that the
properties of language can be accounted for without recourse to anything other
than language itself.

Not unlike other sciences, in the case of linguistics those properties take
the form of regularities.66 If one can positively show that there are substantial
regularities ascribable to language, and to language alone—and not, for instance,
to psychological behaviors, sociological practices, historical events or logical
principles—then the existence of language as an independent phenomenon is
verified and the possibility of a science of language is guaranteed. This is what
an account of linguistic distribution achieves. Harris presents all the elements of
such endeavor in the following terms, in which we can find another elementary
definition of what he means by distribution:67

Descriptive linguistics [. . . ] is a particular field of inquiry which
deals [. . . ] with the regularities in certain features of speech. These
regularities are in the distributional relations among the features of
speech in question, i.e. the occurrence of these features relatively to
each other within utterances. (Harris, 1960, p. 5)

Put in those general terms, Harris’s distributionalism can be taken as an ac-
curate characterization of the general approach of the computational models we
have been examining, and in more than one sense, the fact that computational
analysis of regularities alone is capable of capturing large regions of linguistic
properties is a confirmation of Harris’s views: language exists as an autonomous

66Harris follows Bloomfield’s program on this point: “As Leonard Bloomfield pointed out,
it frequently happens that when we do not rest with the explanation that something is due
to meaning, we discover that it has a formal regularity or ‘explanation’. It may still be ‘due
to meaning’ in one sense, but it accords with a distributional regularity.” (Harris, 1970, 785).

67Shortly after, he also characterizes distribution as “the freedom of occurrence of portions
of an utterance relatively to each other” (Harris, 1960, p. 5)
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object of inquiry. Autonomous, that is, above all, independent from considera-
tions of meaning, even when it is meaning we are interested in. However, unlike
the models we have examined so far, in the case of Harris that independence
entails a complete absence of privilege of the lexical level. One should see here
not only the effect of the traditional association already mentioned between se-
mantics and lexical level, but also the fact that, as we have already suggested,
distributional regularities are stronger at sub-lexical levels. Hence, Harris’s dis-
tributionalism concerns essentially phonological and morphological elements.

Besides the epistemological motivation and the difference in level of analysis,
Harris’s formulations bear remarkable convergences with recent computational
models. For instance, despite the multiple differences between phonological
and morphological levels, the formal procedures of distributional analysis apply
indistinctly to both of them. Moreover, distributional analysis stands on the
same principles as the models we have seen: mutual dependencies among terms
or “elements”—as Harris generically calls them—are determined by inspecting
the entire series of their contexts or “environments”. Here, no less than in
those models, the relation between elements and environments is conceived,
not as simple “co-occurrence”,68 but as a real duality relation in which the
categorization of the multiple occurrences of elements is achieved by bi-duality
with respect to the corresponding environments within a corpus.

Presenting the details of such distributional analysis at the level of phonemes
or morphemes would take us too far.69 Nevertheless, it is worth noticing that
not only the conceptual framework set up by Harris corresponds intimately to
the mechanisms underlying word embeddings, but the formal objects governing
the analytical procedure are also virtually the same. Of course, it is impossible
to find in Harris’s formulations any attempt to make use of advanced algebraic
methods such as SVD or tensor calculus, let alone neural network models. Yet
term-context matrices are no less explicitly used, as we can see in fig. 8. Signif-
icantly, the main motivation for their introduction is to establish the structural
relation between terms that we have referred to as “analogy” (as opposed to
shared co-occurrence). Indeed, following his analytical procedure, two elements
(rows) can be merged into one formal unit if the set of their environments
(columns) are complementary; in other words, if they do not share any explicit
context. The corresponding elements are then established as contextual variants
of the same formal unit. Of course, there can be more than one way of perform-
ing such reduction, which are all equivalent from the formal viewpoint of the
description, but those reductions are privileged which entail the most optimal
description of the whole system.70

Unlike the latent dimensions of the models we have examined, the formal
units stemming from the reduced dimensions are not only interpretable in this
case, but they constitute the elementary units of language resulting from lin-
guistic description: phonemes and morphemes. In the case presented in fig.
8, elements represented by different typographical variants of the same letter
should be reduced to the same formal unit. For instance, the distributional
complementarity of the elements K, k and k, respectively indicating the sounds

68Harris despises as much as Landauer a conception of language as a “bag of words”. See
(Harris, 1970, p. 785).

69The interested reader could simply refer to Harris’s Harris (1960).
70Note that Harris’s procedure can be understood as an elementary technique of dimension-

ality reduction.
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Figure 8: Term-context matrix showing the distribution of the different sounds
corresponding to the phonemes /t/, /k/, /g/ and /r/ in Harris’s (Harris, 1960,
p. 74).

for “car”, “doctor” and “key”, leads to consider them as three different variants
(back, central and front) of the same phonological unit /k/. Yet the identity
of the latter is purely formal. Indeed, there is no substantial (i.e. acoustic or
articulatory) reason to associate k and k with K rather than with G (“gods”). It
also follows in this case that the elementary building blocks of language as they
can be scientifically established by a distributional description relies on nothing
more than the latent discriminating space derived from the overall system of
constraints given by the distributional structure presented by the matrix.

The few elements we have considered show that Harris’s original distribu-
tionalism provides an adequate basis for the intelligibility of MMs and word
embeddings, not despite his refusal to associate his theory of language with the
structure of meaning, but precisely because of it. It is by holding to the idea
that, irrespective of the multiple aspects of meaning, linguistic phenomena are
endowed with their own gravity, characterized by their own properties and de-
fined by their own rules that Harris develops a formal account of language whose
mechanisms correspond closely to those of the computational models we exam-
ined. Indeed, as we have seen for the latter, the image of language stemming
from Harris’s distributionalism is that of an autonomous system of dependen-
cies relying on a co-determination between elements and environments related
as dual terms in a term-context matrix. The essence of language can thus be
attributed to an implicit or latent space of that matrix distribution and not the
cognitive faculties of individual subjects. Moreover, like those models, the same
mechanism of dependency works at different levels of languages (phonological
and morphological).

After examining Harris’s own formulations, we understand above all that
language is about regularities in utterances and that, as long as computational
models are capable of extracting regularities from linguistic corpora, they will be
capturing relevant linguistic features. However, the originality Harris’s theory
has to offer to our image of language resides in the idea that, since those regulari-
ties are purely formal (i.e. independent from meaning), they are not organized as
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mere similarities. Far from relying in similarities, distributional analysis estab-
lishes those regularities as a complex structure holding all the pieces of language
together. Indeed, the regularities extracted from the term-context matrix pro-
vide the elementary building blocks of language (phonemes and morphemes) as
formal units whose identity depends on the global constraints of that space of
distributions. That very definition of the elementary units deploys a system of
internal dependencies that makes that each term maintains with all the others
coordinated relations of mutual opposition (e.g. by construction, the phonemes
/t/, /k/, /g/ and /r/ of fig. 8 are mutually exclusive). Unlike the spirit of
semantically oriented MMs, Harris uses the same principles giving access to a
latent space (i.e. a duality relation between terms and contexts) to derive rig-
orous structural relations rather than mere proximities and similarities. Only
now can we grasp the significance of what our analysis of the mechanisms of
MMs revealed, namely that similarities were a side effect of a system of discrim-
inating axes: it is not discriminating axes that are an efficient way of capturing
similarities of linguistic units, it is rather similarity of linguistic units—and even
their very identity, as in the case of phonemes or morphemes—that is an effect
of spaces structured by discriminating axes.

In this way, Harris provides us with the means to understand the notion of
structure that we have been needing to characterize underlying regularities of
analogical relations in the embedding space. “Structure” here has a technical
sense: it refers to a system of dependencies of formal units of different levels
which are the elementary building blocks of language. Such an idea of struc-
ture, which is also conveyed by the notion of “grammar” in its most general
sense, is to be opposed to that of embedding “space”, in which terms are not
considered for their mutual stratified dependencies, but only for their higher
or lower similarity. Distributionalism is not about similarity of use, but about
regularity of structures of oppositions built upon discriminating principles. It
is precisely that structure that lies behind the regularities in the dual relations
between terms and contexts. Incidentally, since that structure has no partic-
ular semantic import, the distributional properties concern above all syntactic
regularities. It should not be surprising then if NN word embedding models are
capable of unearthing analogical structures at the syntactic level when looking
for semantic similarities. Relaxing the semantic orientation of previous models,
the original sense of distributionalism emerged on the surface: the regularities of
language are necessarily structured at all levels, starting with syntax. Syntactic
structure is what language is made of.

5.2 The structuralist hypothesis

However, a last question remains open: if distributional structure is independent
from meaning, how is it that, after all, by a pure distributional analysis, word
embeddings and other related models are capable of grasping so much of the
meaning language conveys? In other terms, if distribution is above all a matter
of syntax, how is it that not only syntactic but also semantic structure appears
in those new distributional analysis. Harris gave us the means of understanding
why linguistic distribution is necessarily structural. Yet the price to pay was to
lose any insight on why linguistic structures can be meaningful nonetheless.

Among the scholars who have addressed the distributional hypothesis within
the framework of computational models, Sahlgren is certainly the one who most
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seriously considered this difficulty in Harris’s distributionalism. What is more,
he perceived that the answer resided in the fact that distributional approaches
“are rooted, and thrive, in structuralist soil” (Sahlgren, 2008, p. 34). However,
in his view the issue can be resolved by falling back on the notion of seman-
tic similarity as a perfect equivalent of that of structural differences. In this
way, the problem of meaning within Harris’s framework is seen as that of the
lack of precision of the concept of semantic similarity, “too broad to be use-
ful” (Sahlgren, 2008, p. 37). As we have already seen, Sahlgren’s solution is
then to further characterize similarity by resorting to Saussure’s distinction be-
tween syntactic and paradigmatic relations, and identifying two models that can
respectively grasp those two kinds of relations (word-document and word-word
models), thus substantially specifying the otherwise unusable notion of semantic
similarity.

We have sufficiently discussed the irreducibility of structural differences to
semantic similarity, as well as the difficulties associated with the correlation
between documents and word models on one side and syntagmatic and paradig-
matic relations on the other. However, there is a last aspect of Sahlgren’s
account whose rectification gives the opportunity to address the problem of the
meaning of structural differences in a different way.

Sahlgren is right in invoking the name of Saussure to asses this difficult
question. Indeed, the idea we found in Harris that linguistic phenomena are
better understood if conceived under the form of a structural organization goes
back to Saussure’s structural linguistics Saussure (1959). Significantly, as in the
case of Harris, the structuralist conception of language is, for Saussure, also tied
to epistemological concerns. Both here and there, structuralism is presented as
a way of assuring an autonomous scientific account of linguistic phenomena. Yet
for Saussure, that starting point assumes a dramatic tone, since, as soon as we
resolve to derive some basic properties from linguistic phenomena—even if only
distributional properties—we realize that we are hampered by a fundamental
circumstance: linguistic units are not immediately given in experience. Not that
we cannot have access to actual utterances for one reason or another. However,
faced with an actual utterance, there is no immediate, simple or natural way to
determine which units that utterance is composed of. Ultimately, there is even
no essential way of knowing if we are in front of a linguistic utterance at all.

Among the many pieces of evidence he provides to support this claim, Saus-
sure evokes the case in which we are confronted with an unfamiliar language
(Saussure, 1959, p. 103). In that situation, not only do we not understand
what is being said, in the sense that we do not know what the words mean,
but we are not even capable of identifying what words are. More than that,
we are unable to determine what are the different sounds that have been suc-
cessively pronounced, as we can easily verify by trying to reproduce the entire
utterance under the supervision of our interlocutor. And it is known that no
model exists that can convincingly determine the clear limits of sentences in
spoken language. Eventually, if no other principle comes to our aid, we could
never tell if our interlocutor is actually speaking or just spouting gibberish to
make fun of us or for any other reason—in which case we would not be in front
of a linguistic phenomenon at all.

From that basic fact, we are forced to conclude that in the materiality in
which it is given in experience, language appears as a continuous and “shapeless
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mass” (Saussure, 1959, p. 111 sq.),71 for which no physical property can provide
a natural analysis into relevant linguistic units.72 It belongs to the essence of
linguistic units to be established through an arbitrary segmentation of that ma-
terial continuum, understanding by arbitrary, not that they can be determined
at will at any time, but that their established form is not motivated by any sub-
stantial reason (Saussure, 1959, p. 67 sq.). The multiple names the same object
receives depending on the language (e.g. “house”, “maison”, “casa”, etc.) is a
piece of evidence of that fact, as is the diversity with which different languages
organize the continuum of sounds, which makes that, for instance, Japanese
speakers recognize the sounds corresponding to the English /r/ and /l/ as one
and the same sound, while Spanish are not able to distinguish between /b/ and
/v/.

It follows that, without recourse to some other tool allowing us to make
the relevant distinctions, no distributional analysis could ever begin to be per-
formed, since distribution presupposes that we can already identify the same
terms or units in different environments. More than establishing distributional
properties, the principal task of the linguist is then to perform a complex seg-
mentation procedure at multiple levels, establishing the relevant linguistic units
upon which an entire language is built. And her situation is in this no different
than that of the ordinary speaker dealing with a new language, including the
latter’s mother tongue at the moment of its acquisition.

Saussure’s famous solution to this problem consists in affirming that relevant
linguistic distinctions are made and recognized only through the intervention of
another similarly structured albeit heterogeneous system that will help polarize,
as it were, the continuous materiality of language. As an example, take the
case in which, as non-English speakers, we hear the word “plead” in spoken
English, and we try to analyze it in relevant units. We might at some point
consider the fact that such utterance corresponds to non-comparable situations,
for instance a discourse in court and red liquid flowing out of someone’s body.
Eventually, those incomparable situations will end up helping us distinguish
what we initially experienced as continuous and undifferentiated sounds into
the corresponding different utterances “plead” and “bleed”.73

The heterogeneous elements that helped us operate that otherwise arbitrary
acoustic distinction can legitimately be called the meanings of the resulting
terms. However, two remarks are immediately necessary here so as not to fall
back into a classic referential theory of meaning. On the one hand, such mean-
ing relation does not hold between words and things (or states of affairs), but
between the discriminating power of a field of experience and the acoustic con-
tinuum going from /p/ to /b/ (and not from “plead” to “bleed”). The word
“plead” is at the crossroads of a multiplicity of those sub-lexical discriminat-
ing effects (such as the ones resulting from the opposition between “plead” and
“played” or between “plead” and “please”) and its meaning is not given by the
aforementioned situation in court, as a state of affairs, but by the set of all those

71This is no less true of written or any other kind of language than of spoken language.
72This fact has been verified since by multiple empirical studies. See for instance Liberman

(1957).
73It would not be too difficult to interpret NN supervised training along these lines, the

training set being typically composed, as we have seen, of pairs of vector representations
belonging to heterogeneous domains of content (e.g. the image of an animal and its written
name). For an interpretation of NN training in terms of structuralist procedures, see Maniglier
(2016).
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discriminating directions.
On the other hand, unlike a referential conception of meaning, while an het-

erogeneous field of experience helps operate a distinction in the acoustic contin-
uum, the opposite is also true. For instance, in presence of two initially indistin-
guishable water courses, the English utterances “river” and “stream”—already
distinguished through mechanisms related to their sub-lexical units, while not
necessarily to their respective meanings—will help establish a relevant polarity
in experience which would be otherwise non-existent, as it is indeed the case
for other languages. The discriminating action between the two systems does
therefore not take place unidirectionally (from meanings to utterances), as in
the case of standard referential theories of meaning, but operates simultaneously
in both ways. This is why Saussure prefers the words “signifier” and “signified”
instead of utterance and meaning to qualify those two systems as internal as-
pects of the same complex phenomenon (Saussure, 1959, p. 65 sq.). In this
respect, his disciple Louis Hjelmslev is right to characterize the distinction be-
tween the two systems or “planes” as a purely formal one, calling those planes
“expression” and “content” arbitrarily, without regard to any substantial con-
sideration (Hjelmslev, 1953, §13). Hjelmslev’s generalization has the additional
advantage of considering under one and the same framework the discriminating
action between pairs of systems of any kind, for instance graphical and acous-
tic, in which the graphic characters “g” and “c” help operate the distinction
between /G/ and /K/, and sounds such as /b/ and /d/ permit to dissipate the
possible confusion between the symmetric graphics “b” and “d”.

By taking into account the discriminating action of another system in our
original series of linguist phenomena, relevant linguistic units can finally be
identified at different levels of language. Yet the most important thing to us
is that, by doing so, we are also revealing fundamental aspects of the meaning
of those units, since that meaning is nothing but the effect, in another field
of experience, of the discriminating principles implied in the very procedure of
derivation of those linguistic units.

Due to the singular way in which they are established, units are not stan-
dalone identities, but differential or oppositional values at the crossroads of a
whole series of discriminating axes. We have seen the same idea acting in Har-
ris’s formal procedure for the definition of phonemes. Saussure provides a more
intuitive illustration of the underlying dimensions that contribute to the delimi-
tation of a lexical unit, namely the French word “enseignement” (corresponding
to the English noun “teaching”) in fig. 9. It is impossible not to recognize in
Saussure’s diagram the mechanism at play in embedding spaces as we charac-
terized them earlier (p. 38) through all the analogical directions identifiable
at the intersection of the word “house” (i.e. “houses”, “housed”, “bungalow”,
etc.).

It should not be surprising if, here again, we find duality and bi-duality
as the basic relations through which those axes can be defined. Indeed, if we
come back to our example of “plead” and “bleed”, we see that, as the result of
that heterogeneous polarization of the continuous acoustic matter, we now have
the means to distinguish the sound /p/ at once from /b/ and from /li:d/. In
other terms, we have acquired the capacity of defining the relation of duality
/p/ maintains with /li:d/ and the bi-duality that relates /p/ to /b/ through
their shared duality with /li:d/. These are precisely what Saussure respectively
calls syntagmatic and paradigmatic relations, which define in his view the fun-
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Figure 9: Saussure’s diagram of the underlying dimensions contributing to the
delimitation of the lexical unit “enseignement” (Saussure, 1959, p. 126).

damental mechanism of language, not only at a phonological but at every level
(Saussure, 1959, II, ch. VI).

We can understand now why Sahlgren’s appeal to Saussurean structuralism
is conceptually flawed: syntagmatic and paradigmatic relations cannot rely on
words, sentences, passages or documents to specify the organization of meaning
because those linguistic units are not given before the syntagmatic and paradig-
matic relations into which they will enter. On the contrary, those relations are
introduced precisely as a means to establish the relevant units at work within
a language. This is not to say that MMs bear no connection whatsoever with
syntagmatic and paradigmatic relations. Quite the opposite, such relations are
almost all those models implement. But they are not what those models produce
in result, based on existing units. They are what inform the mechanisms of the
model in order to derive the implicit differential dimensions by which the rele-
vant linguistic units can be established in the end. More precisely, the relation
between terms and contexts corresponds to what Saussure calls syntagmatic
relations.74 The global organization of those relations will then contribute to
establishing paradigmatic relations both at the level of terms and of contexts,
the co-determination of which will result in relevant discriminating dimensions
giving shape to the implicit structure that governs the existence of significant
units of language.

Interestingly, for Saussure, structural properties are built upon a specific
configuration of syntagmatic and paradigmatic relations that he calls “analogy”,
covering the exact same phenomena we have examined in the previous section
(Saussure, 1959, II, ch. IV). Yet in the general framework set up by Saussure’s
structuralism, analogies are not just an external fact verifiable at the level of
language, but the very procedure by which language organizes its meaningful
regularities against the irrationality introduced by linguistic use. The following
example is prototypical in this sense:

The nominative form of Latin honor, for instance, is analogical.
Speakers first said honōs : honōsem, then through rhotacization
of the s, honōs : honōrem. After that, the radical had a double

74Incidentally, MMs help to understand that syntagmatic relations are not symmetrical but
connect saturated terms with unsaturated ones—an idea that is absent in Saussure’s Course.
Hjelmslev’s functional reformulation of structuralism will make this asymmetry explicit.
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form. This duality was eliminated by the new form honor, created
on the pattern of ōrātor : ōrātōrem, etc., through a process which
subsequently will be set up as a proportion:

ōrātōrem : ōrātor = honōrem : x

x = honor

Thus analogy, to offset the diversifying action of a phonetic change
(honōs : honōrem), again unified the forms and restored regularity
(honor : honōrem). (Saussure, 1959, p. 161)

It appears that, from a structuralist point of view, analogical relations in
language are not a surprising feature of a formal account of language as it
seemed to be for NN word embedding models, but on the contrary, the general
form under which language identifies and organizes its elementary units. Yet
analogy is only the local manifestation of such organization, related to the way
individual speakers practice a language. The underlying structure is made of
multiple interconnected discriminating dimensions from which concrete units
at all levels (phonological, morphological, lexical, etc.) borrow their syntactic
identity and their semantic effect as the result of a combination of distinctive
features.

No one has dedicated more efforts than Hjelmslev to draw the formal con-
ceptuality of such latent structure and to specify the procedures through which
it could be practically derived in the scientific study of language. A brief ac-
count of his conception can then indicate the way in which the structuralist
perspective can contribute to grasping the underlying structure that embedding
spaces seem to manifest.

For Hjelmslev, as for Saussure, the aim of linguistics is to derive the reg-
ularities underlying linguistic utterances by which linguistic units of all levels
could be identified as oppositional entities stemming from a continuous sub-
strate. Yet he will mainly put the accent on the systematic character of such
regularities. To this end, one of the key components of his theory is given by a
unified formal procedure to describe any linguistic category, such as grammat-
ical case or comparison. Categories are composed of members related to each
other by a complex structure of oppositions. For instance, the category of case
in German is composed of the interrelated members: nominative, accusative,
dative and genitive, while the category of comparison in English contains the
three members: comparative, superlative and positive. Members of categories
contribute to determining the form and the content of specific linguistic units
(e.g. “better”, “best”, “good” in the case of the English comparative), such
that no significant linguistic unit can be identified without identifying at the
same time properties of the categories that unit manifests.

The structure of any category ultimately depends on a continuous “con-
ceptual zone”—as Hjelmslev sometimes calls them—specific to each category,
the particular occupation of which characterizes the latter’s members.75 As we
have revealed for MMs, the challenge of linguistic analysis within Hjelmslev’s

75While in his early work Hjelmslev thought of those conceptual zones in semantic terms,
his theory evolved into a purely formal conception based on abstract notions of correlation,
participation and exclusion. See Hjelmslev’s (Hjelmslev, 1975, §Gb3.1) and Herreman’s intro-
duction to this difficult text Herreman (2011).
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framework is to provide the general means to describe the complex relations
of opposition structuring any category in terms of those highly unstructured
conceptual zones. And for Hjelmslev as well, the solution will be to conceive a
system of discriminating axes as a sort of intermediary layer between concep-
tual zones and categories. Thus, on the one hand, a small number of dimensions
(empirically never more than three) will be drawn to describe the conceptual
zone; on the other, each member of the category will be described in terms
of the possible values of discriminating axes built upon those dimensions. For
instance, if a certain conceptual zone is described by three dimensions, and if
α is a possible value of the axis built upon the first of them, β a value of the
second and γ of the third, then a possible member of that category could be
characterized by the combination αβγ, acting as a kind of discrete coordinates
determined by the three axes.

For a particular axis, possible values can be understood as the result of a
partitioning of the axis. Values also reflect a specific way of occupying the cor-
responding dimension in the conceptual zone. However, the key point of this
construction is that the partitioning of the axis does not correspond to a parti-
tioning of its corresponding dimension. The whole interest of intermediate axes
is to provide a partitioning over which a structured category can be built, with-
out equally partitioning the conceptual zone, so that the members of linguistic
categories can be described as a system of overlapping or non-exclusive partial
coverings of conceptual zones.

Take the example of the English comparative. As stated above, the members
of this category are the comparative, manifested by the suffix “-er” on adjec-
tives76 (e.g. “better”, “lower”, “broader” ), the superlative, manifested by the
suffix “-est” (e.g. “best”, “lowest”, “broadest” ) and the positive, correspond-
ing to the absence of suffix (e.g. “good”, “low”, “broad”). For Hjelmslev, the
description of this category requires only one dimension, which he characterizes
as “intensity” (i.e. the intensity with which those adjectives are attributed to
nouns77). Intuitively, we would be inclined to make each member of the cate-
gory correspond to a particular degree of intensity (weak, strong and neutral,
respectively), and hence to a particular region of the conceptual space described
by the intensity dimension. However, it is easy to verify that this is not what the
members of the category usually mean in actual utterances. For instance, the
English superlative can be sometimes used to express a weak intensity, like the
comparative, as in “of these two, which is best?”; likewise, the positive, neutral
in principle, can also express weak intensity, as when a room is called “the small
room” only because it is smaller than others, without actually being small.78

Phenomena such as these are so pervasive in natural language that a perfect
correspondence between members of a category and regions of the correspond-
ing conceptual zone would continuously force us to denounce the ambiguities
and abuses of natural language, with the consequent shift from a descriptive to

76We presuppose here the existence of adjectives, although such a class should in principle
be structurally derived as well, partly based on the fact that the terms that fall under it are
subject to a comparative category, following the basic mechanisms of (bi)-duality.

77Here again, the class of nouns is presupposed. Its actual inference would in part stand
on the possible relation to the class of adjectives. As we already mentioned, this semantic
characterization of comparison in terms of intensity will be abandoned in Hjelmslev’s later
works, in favor of purely formal definitions.

78This is not necessarily the case for other languages, in which the comparative category is
otherwise structured. See (Hjelmslev, 2016, §7).



52 Why can computers understand natural language?

a normative attitude.
Hjelmslev’s intermediary axes avoid that pitfall. For Hjelmslev, dimensions

of conceptual zones are divided into fields: positive (+), negative (÷) and neu-
tral (0) (e.g. strong, weak and neutral, in the case of the intensity dimension
of comparison). Yet, fields are not exclusive, therefore a category member can
cover more than one field. Since categories are nevertheless structured as oppo-
sitions, different forms of oppositions will be defined out of non-exclusive ways
of occupying those fields. In its most simplified version, three basic forms of
oppositions can be defined: contrariness, contradiction and a form of opposition
which is neither contrariness nor contradiction and which is, for Hjelmslev, the
simplest and most common in natural language. The latter is given by two val-
ues, which Hjelmslev notes α and A, the first of which corresponds to occupying
only one field of the corresponding dimension (usually the positive one), while
the second can occupy any of the three fields. The English grammatical case is
an example of a category structured by this opposition. Such category has only
two members: the genitive (α), occupying a precise region of the corresponding
dimension and marked by the morpheme “-s” (e.g. “John’s book”) and the non-
genitive (A), which is unmarked, and can occupy any position, including that
of the genitive (e.g. “The book of John”). The other two forms of oppositions
are complex, which means that, for each value, one or two fields are necessarily
occupied while the others may be occupied as well, but not necessarily. In the
contrary opposition, the values—noted β and B—relate to each other as the
necessary occupation of the positive and the negative field respectively (with
the possible but not necessary occupation of the remaining fields in each case);
the contradictory opposition appears, in turn, as the simultaneous necessary
occupation of the positive and the negative field (γ) against the necessary occu-
pation of the neutral (Γ), with possible occupation of the remaining fields. Fig.
10a shows the diagram provided by Hjelmslev to illustrate these relations.

In this way, three pairs of oppositional values are identified as possible dis-
criminating values for axes: α−A; β−B and γ − Γ. However, an axis can be
partitioned into more values than those given by only one pair. In the ex-
treme case, it can hold all six of them.79 As already stated, it is through these
values that members of categories will be finally characterized. If we return
to the example of the English comparison, the three members of the category
(comparative, superlative and positive) can be now respectively characterized
through the axis partitioned into the values β, B and γ, all of which are defined
in terms of different possible occupations of the fields +, ÷, 0 of the intensity
dimension. Those three values can now adequately grasp the overlapping uses
of the linguistic units corresponding to the members of the English comparative,
precisely qualifying, instead of denouncing, their apparent ambiguity.

The English comparison is a fairly simple category, with only three members.
More complex categories, with a larger number of members can however be
described in the same way, increasing the number of dimensions if necessary.
Thus, if a category has six members or less, it can in principle be described
by one axis (like the aforementioned category of case in German, described
by the four values β, B, γ, Γ) although other descriptions with more axis are

79Due to internal dependencies between the six values (which tend to respect the original
pairs), not every combination is actually possible. Hjelmslev identifies a total of seven, defining
axes of two up to six values: α, A; β, B, γ; β, B, Γ; β, B, γ, Γ; α, A, β, B, γ; α, A, β, B, Γ
and α, A, β, B, γ, Γ.
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(a)

(b)

Figure 10: (a) Possible values for discriminating axes (neither contrary nor
contradictory = α−A, contrary = β−B, contradictory = γ − Γ) in terms of the
occupation of the fields of a conceptual zone (+ = positive, 0 = neutral, ÷ =
negative). (b) Case category of the Tabassaran language (Hjelmslev, 1935, p.
146).

also possible. The description of categories containing more than six members
require more than one dimension, and as we said, Hjelmslev never found the
empirical need to appeal to more than three dimensions. In the latter case,
counting six values at most for each dimension, the maximum number of possible
members is 63 = 216. Within configurations of this sort, not all the possible
combinations of values need to be realized as members of a category. Fig. 10b
shows the configuration of the category of case of the Tabassaran language, the
largest encountered by Hjelmslev, defined by three axes with five, six and two
possible values respectively, only 52 of the 60 possible combinations of which
are actually realized in the language.

In this manner, Hjelmslev provides an explicit theory of the way in which
discriminating axes structure the latent space that underlies the distribution of
linguistic units and conditions their semantic effect. Since that latent structure
constitutes the fundamental principle by which units can be identified as such,80

Hjelmslev’s perspective offers a suggestive connection between Saussure’s con-
ception of language and the contemporary linguistic models we have studied.
Therefore, while the compatibility and fruitfulness of Hjelmslev’s approach with
respect to present-day models is still an empirical question, from a philosoph-
ical perspective his conceptual efforts can nevertheless help understanding the
mechanisms that guarantee the success of those models and even suggest new
research orientations.

More generally, all the elements belonging to classic structuralist linguistics
that we have exposed achieve the image of language that we were retrospectively

80Although we presented the elementary mechanisms of Hjelmslev’s theory through mostly
morphological categories, their formal definition could, in theory, be applied to any linguistic
level in which a latent structure is to be drawn as the underlying principle of identification
and characterization of significant units.
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reconstructing, by allowing us to think the way meaning can emerge as a direct
effect of the formal organization of language itself.81 From the structuralist per-
spective, that formal organization of language appears as a complex structure of
discriminating operators resulting from a mutual segmentation process between
two systems. Insofar as our analysis relies on the distributional properties of one
of those systems (utterances, signifiers, expressions, sounds, etc.) and extract
the multiple discriminating dimensions that determine the categories organiz-
ing its units, we will be capturing significant distinctions of the other system
(meaning, signified, contents, thought, etc.) which are carved in the former
as its deep imprint. If we accept to generalize the reference to “thought” and
“sound” to any pair of heterogeneous systems, the resulting image of language
could be condensed in Saussure’s formula: “The characteristic role of language
with respect to thought is not to create a material phonic means for expressing
ideas but to serve as a link between thought and sound, under conditions that
of necessity bring about the reciprocal delimitations of units.” (Saussure, 1959,
p. 112). That is what we can call the structuralist hypothesis: the idea that
distributional properties convey meaning only through the action of a latent
structure determining possible semantic values, and which is inseparable from
the principles of identification of the elementary units of language, since mean-
ing is the effect of discriminating operations performed through segmentation
procedures of which the units of language keep the trace.

6 Conclusions

Before summarizing the principal features of the image of language that best
conforms to the deeds of NN word embeddings, it is worth recalling the main
steps that guided us through its reconstruction.

After presenting the basic functioning and most promising results of word
embeddings through its pioneering model, word2vec, we recognized their concep-
tual and philosophical significance in three main circumstances. First, the idea
that the automatic reconstruction of the underlying organization of language
does not require more human intervention than the one implied in the most or-
dinary use of language as recorded in a practically raw linguistic corpus. Second,
the evidence that in that reconstruction both semantic and syntactic contents
of words are determined at once and as the result of the same procedure. Third,
the perspective that word vector representations are not simply disposed in simi-
larity neighborhoods, but that the vector space itself is also structured following
precise directions at the crossroads of which syntactic and semantic contents
are established. It is the conjunction of those three circumstances, namely that
linguistic structure defining semantic and syntactic content is successfully de-
rived through an unsupervised automatic procedure relying exclusively on bare
linguistic performances, that suggests that NN word embeddings are not just a
successful new technology, but convey an altogether novel image of language.

81This does not imply that the complex phenomenon of meaning is reducible to the linguis-
tic mechanisms by which language organizes its semantic effects, since a theory of meaning
could hardly avoid the difficult question of the contribution of perception to meaning. The
structuralist perspective just exposed suggests already a possible treatment of this question
when it appeals to an heterogeneous plane as a condition for establishing discriminating cri-
teria for linguistic units, since that other plane could in principle be related to perceptual
properties. But the role played by perception in this case is still far from being clear.
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As a first step to unravel that image, we focused on the underlying mech-
anisms upon which word embedding models stand. We found then that those
mechanisms where essentially attached to the factorization of a term-context
matrix, that is, a matrix collecting (an information-theoretical transformation
of) the frequency in which linguistic terms appear in the context of other terms.
We were thus led to examine those matrix models and the effects of factoriza-
tion, and identified that their fundamental mechanism was capable of drawing
a latent organization underlying observable linguistic units, defined by multi-
ple dimensions of discriminating action between groups of terms and groups
of contexts. We also showed how the action of those implicit or latent dimen-
sions was irreducible to explicit representations in their capacity of mobilizing
the global organization of the space to determine the relation between terms or
between contexts, thus allowing in principle to connect terms that do not share
any explicit context.

However, once we identified such a mechanism as the basis of word embed-
dings, the reasons for it to succeed in grasping so many aspects of linguistic
content were still to be addressed. This necessitated turning our attention from
the technical aspects of word embedding models to that of the image of language
itself. In other words, the question “why can computers understand natural lan-
guage?” required that we stop interrogating computers and we turn to natural
language instead, to raise another question, namely: “what must natural lan-
guage be for those mechanisms to succeed in the way they do?”.

To that question, the literature around NN word embeddings only provided a
frail answer, under the name of “distributional hypothesis”, stating that “words
that occur in similar contexts tend to have similar meanings”. We turned,
therefore, to the treatment of this question that accompanied the development
of previous (non-NN) MMs, and found that the most salient versions of the
distributional hypothesis appealed to a “use theory of meaning” as an attempt
to attribute explanatory power to the notion of linguistic context convention-
ally attached to distributionalism. We suggested then that all those attempts
shared a common interpretation of the connection between distributionalism
and a usage-based perspective, namely, the idea that the distributional prop-
erties of linguistic units are somehow correlated with the cognitive faculties
of individual agents, owing to the position of contexts—whether linguistic or
extra-linguistic—conceived as nothing more than the restricted conditions of
the exercise of those faculties. Within this setting, the notion of co-occurrence
played a decisive role as the support of the cognitive operations (of associa-
tion or abstraction) of subjects over the homogenous units appearing in those
restricted contexts.

However, that image conflicted in several points with the elementary mech-
anisms of MMs we had identified. First, most results of MMs could not be
ascribed to direct co-occurrence. Yet the alternative accepted idea of shared
co-occurrence failed to capture two essential properties of the mechanisms of
MMs, namely: the fundamental disparity between terms and contexts and the
non-trivial organization of contexts themselves. The first one led us to under-
stand the relation between terms and contexts as a functional one, that is,
as a relation between saturated and unsaturated expressions. The second one
raised the question of the necessary mutual conditioning between the similar-
ity of terms and that of contexts, asking for much more complex explanatory
principles that those proposed by the usual images of language attached to dis-
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tributionalism. Based upon those aspects, we advanced that distributionalism
is less about co-occurrence of words in context than about simultaneous and
articulated discrimination between terms and contexts. The figure of analogy
corresponding to it provided then a possible alternative to that of co-occurence
to qualify that mechanism from the perspective of individual speakers. However,
drawing from the formal principles governing the mechanisms of MMs, and in
particular, from the dual spaces corresponding to row and column vectors of
matrices, we proposed a formal characterization of that articulated discrimi-
nation by resorting to the notion of (bi-)duality : terms and contexts stand in
relations of duality in such a way that the relatedness between two terms is
established through bi-duality, that is, through the duality the first maintains
with the dual contexts of the second. We also suggested that such a mechanism
could be pushed further by considering the duality between a term and the type
of its dual contexts established by bi-duality.

As a consequence of this characterization, the notion of context appeared as
a strictly formal one, less related to the cognitive capacities of individuals than
to an internal dimension of the organization of language itself. The conceptual
framework for the analysis of language is thus freed from the figure of individ-
ual subjects since language is less about subjective use than about relatively
autonomous regularities in the global organization of language before which in-
dividuals are left with the possibility of a strategy. This provides a plausible
explanation of why word embedding models are capable of deriving significant
linguistic content without the need for any more human intervention than the
one implied in raw linguist corpora.

To address the other two initial questions of our inquiry, we noted that if
the joint derivation of semantic and syntactic properties might seem surprising,
that should not be attributed to a new capacity of NN models but to a neglected
possibility within MMs due to the mainly semantic orientation governing their
development. We identified three epistemological obstacles associated with that
semantic orientation, namely the almost complete exclusion of syntax from the
original interests of MMs, the privilege granted to words as fundamental units
of linguistic analysis and the disregard for possible underlying structures of lan-
guage in favor of an organization of the linguistic space in terms of similarities.
We showed then how the first two aspects were intimately connected: accounting
for syntactic content in the framework of MMs requires to consider terms and
contexts at sub- and supra-lexical levels, and conversely, introducing the latter
naturally induces the establishment of syntactic regularities. We suggested then
that, if NN word embeddings were able to grasp semantic and syntactic contents
as the result of one and the same procedure, the reason might reside in their
capacity of taking advantage of this neglected possibility of MMs.

The abandon of the lexical privilege and the corresponding consideration of
syntactic content were for us the principal hint to understand why the embed-
ding space can be informed by an emergent structure. To follow that lead, we
entered into “structuralist soil” by examining Harris’s original distributional-
ism. In accordance with our interpretation, Harris’s formulations show that,
given that the very sense of a distributional description is to free the scientific
account of language from the external viewpoint of semantics, the link between
the analysis of linguistic distribution and the derivation of structural features
is necessary. Indeed, outside a semantic approach, lexicality has no privilege
for distributional analysis, which takes place essentially at the phonological and
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morphological levels. Unconcerned with semantics and standing on phonologi-
cal or morphological features, distribution is necessarily structural distribution.
Significantly, we found that, despite a natural lack of technical complexity, the
key analytic instruments of Harris’s distributionalism are highly convergent with
the mechanisms of modern MMs, namely a term-context matrix with dimen-
sionality reduction techniques. However, we saw that the latent space derived
through those techniques provides a complete series of formal units structurally
related to each other rather than a set of dimensions to measure approximate
similarity. Harris’s theory was not free of difficulties, nonetheless. Indeed, by
making such a clear-cut distinction between semantics and distributional fea-
tures, Harris precluded the possibility of conceiving a direct relation between
those structured formal units and any semantic content. This is what led us
to conclude our inquiry by assessing the structuralist theoretical background of
Harris’s distributionalism.

We found the answer to that last open issue in an idea stemming from the
singular approach to language of European structuralism (i.e. that of Saussure
and Hjelmslev), which we called “the structuralist hypothesis”, namely the idea
that meaning is the effect of structure. Such hypothesis is based on the fact
that linguistic structure is not the result of the composition of units but of
unmotivated decomposition or segmentation of an originally shapeless material
continuum. Such segmentation can only be done through the intervention of a
second heterogeneous continuum operating a discriminating action on the first
one, while receiving from the latter a comparable action in return. Structure is
then always double, since it is the result of a process of simultaneous segmenta-
tion between two heterogeneous systems or planes, of which one can be thought
of as the content or meaning of the other. This is why the analysis of segmen-
tation of one plane—which is what distributional analysis in fact achieves—can
capture meaningful features belonging to the other one, carved, as it were, in
the form of the former. Moreover, an overview of Hjelmslev’s development of
Saussure’s program suggested the way in which that structuralist conception of
language could be related to the basic formal principles of the contemporary
models under study.

From word2vec’s word contexts and implicit matrix factorization to Saus-
sure’s syntagmatic and paradigmatic relations and Hjelmslev’s categories, through
MMs, SVD and Harris’s element-environment charts, we have found the action
of one and the same mechanism underlying the capacity of linguistic analysis
to grasp significant features of language: the duality between terms and con-
texts, and a principle of equivalence between terms and between contexts related
through bi-duality. Interestingly, that mechanism tends to characterize bottom-
up approaches to language, that is, approaches in which the organization of
language is not supposed to be given from without, but derived from within the
practice of language itself, as an emergent structure. NN vector representations
(whether it is of words, characters or contexts) appear then only as the latest
tool capturing the effects of that mechanism of duality and bi-duality in lan-
guage. Compared to previous perspectives of the same nature, its importance
lies in that, with almost minimal presupposed structure (let alone computational
costs), it can account for those effects as something more than mere semantic
similarity satisfying most needs of MMs; but also, in that it can actually pro-
vide a surprising amount of semantic content, the derivation of which classic
structuralist theories could, at best, only conjecture.
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As we have suggested, that basic mechanism of (bi-)duality is to be at-
tributed to language itself rather than to the linguistic models studying it. This
was a common conception among the authors we have studied, from Landauer
affirming that the model “is the real-thing” (Landauer et al., 2007, p. 8), to
Harris stating that “the position of the speakers is after all similar to that of
the linguist” (Harris, 1970, p. 779), to Saussure, for whom, the units of lan-
guage “are not given from the outside, language must draw them from within
itself” (Maniglier, 2006, quoted in p. 207, our translation). This is why we
need to think that embeddings not only provide a successful technique, but also
convey a whole image of language, or in other terms a general but elementary
conception of what language is, of what it means to speak and write.

Animated by (bi-)duality as a fundamental principle governing the linguis-
tic practice of speakers, language appears more like a game than like a tool.
(Bi-)duality and the regularities attached to it are in this sense like the rules
of chess or of Go, which are independent of the will of individual players, who
cease to be players of those games as soon as they stop submitting to those
rules. Rather than an instrumental use, subjects develop a strategy within lan-
guage, which far from violating its regularities, reinforces them in a way models
like word embeddings and MMs in general can efficiently identify. The elements
of that game are not to be confused with the words as elementary material
units whose identity is determined by their referential meanings, since both the
identity and the meaning of words are the result of the fundamental duality be-
tween terms and contexts, as two internal dimensions of linguistic formal units.
Yet units are not necessarily lexical, and against a purely semantic approach of
meaning, we were confronted with only a difference of degree between the syn-
tactic and the semantic levels. Finally, as units are not given from the outset,
linguistic practice and the production of meaning is less the result of a com-
position of words than the effect of the simultaneous segmentation of pairs of
material continuums into formal units of different levels. From this perspective,
if the linguistic subject computes, it is a strategy of segmentation rather than
a compositional rule that it computes.

(Bi)-duality rather than co-occurrence, game rather than tool, strategy rather
than use, form rather than substance, segmentation rather than compositional-
ity. This is the image of language that we have been able to draw behind word
embeddings by tracing back the meaning of its underlying mechanisms. That
image contrasts with many of the principles generally orienting the present de-
velopment of the very field that begets it. Our hope is that, by bringing that
underlying image to the surface and making explicit its connections with the
tradition from which it stems, we will contribute to providing novel orientations
to the field, in adequacy with the nature of its latest advances. In particular,
the image of language we have derived can allow us to relativize the predom-
inantly semantic perspective of the field in favor of the derivation of complex
interconnected structures at different linguistic levels. In this sense, one of the
clearest hints offered by our inquiry is that a segmentation procedure should
be an integral part of the process by which structural features are derived,
and more precisely, of the construction of the representation of the elementary
units of language. Since, as we have seen, structural features are intimately
connected with the segmentation of units at all levels, the consideration of seg-
mentation for the construction of vector representations should help capturing
the structural features those vectors will be expected to represent. By pre-



Juan Luis Gastaldi 59

supposing the segmentation of words and discarding other possible levels of
segmentation, classical word embedding models rely only on partial information
for the reconstruction of linguistic structure. Incidentally, that presupposition
also relativizes the unsupervised character of the learning for, as insignificant as
it may seem, word segmentation already involves a great amount of linguistic
content (that is precisely the content word embeddings are able to grasp). By
including segmentation in the analytic procedure, one would be contributing to
achieving a truly unsupervised model, while increasing its capabilities at the
same time, since the structure of the segmentation bears a direct relation with
the linguistic structures the model is intended to capture. The recent orienta-
tions of the field, obtaining remarkable results with character and context-based
embeddings, tend to confirm this idea.

Yet the consequences of reconstructing the alternative image of language
implied in the new NN language technologies can transcend the limits of the NLP
field, and attain other regions of knowledge and research, such as social sciences,
epistemology and even logic or computer science, in which the notion of language
occupies a crucial position. With respect to those fields, the emergence of a new
image of language can provide the opportunity of significant conceptual shifts
which could be, moreover, accompanied by a fruitful transfer of methodologies,
introducing in those fields analytical tools from NLP and enriching the latter
with the specific treatment language receives in each of the former. In this
respect, we need to recognize a major stake in the possibility, provided by that
new image, of understanding language and meaning independently of purely
individual practices, and yet not resorting to absolute principles valid without
restriction that would make the analysis of actual practices inconsequential.
At equal distance from those two positions, the image of language we have
reconstructed in the previous pages allows us to envisage language as a collective
playground, as a reservoir where the significant distinctions resulting from a
collective construction of signs are deposited as the most intimate treasure of a
culture—to borrow a Saussurean metaphor. It is, after all, the image of those
cultures that models like word embeddings give us the means to depict.
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