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Neural Networks

Credit: Jeremy Jordan
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https://www.jeremyjordan.me/intro-to-neural-networks/


Deep Neural Nets (DNNs)

Source: https://www.asimovinstitute.org/neural-network-zoo/
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https://www.asimovinstitute.org/neural-network-zoo/


DNNs and Natural Language

(Bengio et al., 2003)
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Word Embeddings: word2vec

a cat catches a mouse

(Source: Ferrone et al., 2017)
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Word Embeddings

(https://projector.tensorflow.org)

(Mikolov, Sutskever, et al., 2013)

(Hamilton et al., 2016)

(https://nlp.stanford.edu/~johnhew/structural-probe.html)
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https://projector.tensorflow.org
https://nlp.stanford.edu/~johnhew/structural-probe.html


Word Embeddings: Example

˛ Example: house
house
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Theoretical Consequences

˛ The automatic reconstruction of the underlying organization of language does not

require more human intervention than the one implied in the most ordinary use

of language as recorded in a practically raw linguistic corpus.

˛ In that reconstruction, both the semantic and syntactic contents of words are

determined at once and as the result of the same procedure.

˛ Word vector representations are not simply disposed in similarity neighbourhoods,

but that the vector space itself is also structured following precise directions at the

crossroads of which syntactic and semantic contents are established.
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word2vec as Matrix Factorization

(Mikolov, Chen, et al., 2013)
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Matrix Factorization

6 The Five Factorizations of a Matrix

• Preface p.vii, The Plan for the Book.

A = CR,A = LU,A = QR,A = QΛQT A = UΣV T are illustrated one by one.
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Figure 11: The Five Factorizations

9

(Hiranabe, 2022)
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https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra


Singular Value Decomposition (SVD)

https://dustinstansbury.github.io/theclevermachine/singular-value-decomposition
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https://dustinstansbury.github.io/theclevermachine/singular-value-decomposition


Example: Characters in Wikipedia
- / 0 1 2 3 4 5 6 7 8 9 = a b c d e f g h i j k l m n o p q r s t u v w x y z
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Example: Characters in Wikipedia
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Example: Characters in Wikipedia

Left Singular Vectors:
- / 0 1 2 3 4 5 6 7 8 9 = a b c d e f g h i j k l m n o p q r s t u v w x y z
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Why Can Computers Understand Natural Language?

Faced with the question “why can computers understand natural language?” we should

direct our attention to natural language rather than to computers:

“What must natural language be for the specific algebraic procedures of underlying

word embeddings to succeed in revealing some of its most essential aspects?”
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The Distributional Hypothesis

˛ “You shall know a word by the company it keeps!” (Firth, 1957)

˛ “Words which are similar in meaning occur in similar contexts” (Rubenstein &

Goodenough 1965)

˛ “Words with similar meanings will occur with similar neighbors if enough text

material is available” (Schütze & Pedersen 1995)

˛ “A representation that captures much of how words are used in natural context will

capture much of what we mean by meaning” (Landauer & Dumais 1997)

˛ “Words that occur in the same contexts tend to have similar meanings” (Pantel

2005)

˛ “The degree of semantic similarity between two linguistic expressions A and B is a

function of the similarity of the linguistic contexts in which A and B can appear”

(Lenci, 2010)
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Context and Use

˛ Theory of (linguistic) meaning as “usage” (Wittgenstein) “the meaning of a word is

defined by the circumstances of its use” (Manning and Schütze, 1999)

˛ Two versions of the Distributional Hypothesis:

— Weak: Correlation between context and word meaning (Spence and Owens, 1990)

— Strong: Causality attributed to contextual distributions (Miller and Charles, 1991)

˛ Context: the domain or scope within which entities of the same nature can be

presented together (“co-occur”), in such a way that they can be associated by a

cognitive agent.
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From Distribution to Structure

a = your
c = my

w = apartment
x = house
y = chair
z = stool

your : house

my : apartment

… w x y z …

… … 0 0 0 0 …

a … 0 1 1 0 …

b … 0 0 1 1 …

c … 1 0 0 1 …

… … 0 0 0 0 …

Juan Luis Gastaldi | Why Can Computers Understand Natural Language? 22/30



Theoretical Consequences

˛ Contexts are formal dimensions, not empirical circumstances

˛ Linguistic units are governed by bi-dual relations at different levels

˛ Language is a game requiring a strategy rather than a tool determined by a use

˛ Language is a collective phenomenon, expressing organizing principles of a culture

Juan Luis Gastaldi | Why Can Computers Understand Natural Language? 23/30



Scientific Orientations

˛ Semantics and syntax should be studied as a continuum

˛ The privilege of words should be challenged, in favor of units of all levels

(segmentation)

˛ The study of semantic similarity should lead to the derivation of underlying

structures
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Structuralist Concepts and Tools

(Saussure, 1980)

(Hjelmslev, 1975) (Hjelmslev, 1935)
(Harris, 1960)
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Structuralist Concepts and Tools

(Harris, 1960)
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The Structuralist Hypothesis

˛ Meaning is the effect of structure

˛ Distributional properties convey meaning only through the action of a latent

structure determining possible semantic values, and which is inseparable from the

principles of identification of the elementary units of language, since meaning is the

effect of discriminating operations performed through segmentation procedures of

which the units of language keep the trace

˛ Linguistic content is the effect of a virtual structure of classes and dependencies at

multiple levels underlying (and derivable from) the mass of things said or written in a

given language
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The Structuralist Hypothesis

We need to recognize a major stake in the possibility […] of understanding language

and meaning independently of purely individual practices, and yet not resorting to

absolute principles valid without restriction that would make the analysis of actual

practices inconsequential. At equal distance from those two positions, [the structuralist

image of language] allows us to envisage language as a collective playground, as a

reservoir where the significant distinctions resulting from a collective construction of

signs are deposited as the most intimate treasure of a culture—to borrow a Saussurean

metaphor. It is, after all, the image of those cultures that models like word embeddings

give us the means to depict.
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