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https://www.jeremyjordan.me/intro-to-neural-networks/
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DNNs and Natural Language
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Word Embeddings
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Word Embeddings: Example

o Example: house



o Example: house
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Word Embeddings: Example

o Example: house
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o Syntactic and semantic properties
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Word Embeddings: Example

o Example: house
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Word Embeddings: Example

o Example: house
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Theoretical Consequences

o The automatic reconstruction of the underlying organization of language does not
require more human intervention than the one implied in the most ordinary use
of language as recorded in a practically raw linguistic corpus.

o In that reconstruction, both the semantic and syntactic contents of words are
determined at once and as the result of the same procedure.

o Word vector representations are not simply disposed in similarity neighbourhoods,
but that the vector space itself is also structured following precise directions at the
crossroads of which syntactic and semantic contents are established.
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: Characters in Wikipedia
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Example: Characters in Wikipedia

Juan Luis Gastaldi | Why Can Computers Understand Natural Language? 16/30



Example: Characters in Wikipedia
Left Singular Vectors:

-/ e 1 2 3 4 5 6 7 8 9 = a b c d e f g h i j k U m n o p g r s t u v w x y z -
«  HINEEEEEEE | || H |
« NN H__EN H EFE EE "E_E=
@ | [ | | -
Right Singular Vectors:
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Singular Values:
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Why Can Computers Understand Natural Language?

Faced with the question “why can computers understand natural language”?” we should
direct our attention to natural language rather than to computers:

“What must natural language be for the specific algebraic procedures of underlying
word embeddings to succeed in revealing some of its most essential aspects?”



The Distributional Hypothesis

“You shall know a word by the company it keeps!” (Firth, 1957)

“Words which are similar in meaning occur in similar contexts” (Rubenstein &
Goodenough 1965)

“Words with similar meanings will occur with similar neighbors if enough text
material is available” (Schitze & Pedersen 1995)

“A representation that captures much of how words are used in natural context will
capture much of what we mean by meaning” (Landauer & Dumais 1997)

“Words that occur in the same contexts tend to have similar meanings” (Pantel
2005)

“The degree of semantic similarity between two linguistic expressions A and B is a
function of the similarity of the linguistic contexts in which A and B can appear”
(Lenci, 2010)



Context and Use

o Theory of (linguistic) meaning as “usage” (Wittgenstein) “the meaning of a word is
defined by the circumstances of its use” (Manning and Schiitze, 1999)

o Two versions of the Distributional Hypothesis:

— Weak: Correlation between context and word meaning (Spence and Owens, 1990)
— Strong: Causality attributed to contextual distributions (Miller and Charles, 1991)

o Context: the domain or scope within which entities of the same nature can be
presented together (‘co-occur”), in such a way that they can be associated by a
cognitive agent.



From Distribution to Structure

your : house
my : apartment
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Theoretical Consequences

Contexts are formal dimensions, not empirical circumstances
Linguistic units are governed by bi-dual relations at different levels
Language is a game requiring a strategy rather than a tool determined by a use

Language is a collective phenomenon, expressing organizing principles of a culture



Scientific Orientations

» Semantics and syntax should be studied as a continuum

o The privilege of words should be challenged, in favor of units of all levels
(segmentation)

o The study of semantic similarity should lead to the derivation of underlying
structures
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Structuralist Concepts and Tools
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Structuralist Concepts and Tools
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The Structuralist Hypothesis

o Meaning is the effect of structure

» Distributional properties convey meaning only through the action of a latent
structure determining possible semantic values, and which is inseparable from the
principles of identification of the elementary units of language, since meaning is the
effect of discriminating operations performed through segmentation procedures of
which the units of language keep the trace

o Linguistic content is the effect of a virtual structure of classes and dependencies at

multiple levels underlying (and derivable from) the mass of things said or written in a
given language



The Structuralist Hypothesis

We need to recognize a major stake in the possibility [...] of understanding language
and meaning independently of purely individual practices, and yet not resorting to
absolute principles valid without restriction that would make the analysis of actual
practices inconsequential. At equal distance from those two positions, [the structuralist
image of language] allows us to envisage language as a collective playground, as a
reservoir where the significant distinctions resulting from a collective construction of
signs are deposited as the most intimate treasure of a culture—to borrow a Saussurean
metaphor. Itis, after all, the image of those cultures that models like word embeddings
give us the means to depict.
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